Regularization of differential equations by fractional noise

Stochastic Processes and their Applications - Tập 102 - Trang 103-116 - 2002
David Nualart1, Youssef Ouknine2
1Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
2Faculté des Sciences Semlalia, Département de Mathématiques, Université Cadi Ayyad, BP 2390, Marrakech, Maroc

Tài liệu tham khảo

Alòs, 2001, Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29, 766, 10.1214/aop/1008956692 Decreusefond, 1999, Stochastic analysis of the fractional Brownian motion, Potential Anal., 10, 177, 10.1023/A:1008634027843 Fernique, X.M., 1974. Regularité des trajectories de fonctions aléatoires gaussiennes. In: Hennequin, P.L. (Ed.), École d'Eté de Saint-Flour IV, Lecture Notes in Mathematics, Vol. 480, Springer, Berlin, pp. 2–95. Friedman, 1975 Gyöngy, 1993, On quasi-linear stochastic partial differential equations, Probab. Theory Related Fields, 94, 413, 10.1007/BF01192556 Moret, S., Nualart, D., 2002. Onsager–Machlup functional for the fractional Brownian motion. Probab. Theory Related Fields, to appear. Nakao, 1972, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka J. Math., 9, 513 Norros, 1999, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion, Bernoulli, 5, 571, 10.2307/3318691 Ouknine, 1988, Généralisation d'un Lemme de S. Nakao et applications, Stochastics, 23, 149, 10.1080/17442508808833487 Samko, 1993 Veretennikov, 1981, On strong solutions and explicit formulas for solutions of stochastic integral equations, Math. USSR-Sb., 39, 387, 10.1070/SM1981v039n03ABEH001522 Zähle, 1998, Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields, 111, 333, 10.1007/s004400050171 Zvonkin, 1974, A transformation of the phase space of a diffusion process that removes the drift, Math. USSR-Sb., 22, 129, 10.1070/SM1974v022n01ABEH001689