Molecular genetics of the chloramphenicol‐resistance transposon Tn4451 from Clostridium perfringens: the TnpX site‐specific recombinase excises a circular transposon molecule

Molecular Microbiology - Tập 16 Số 3 - Trang 535-551 - 1995
Trudi L. Bannam1,2, Paul K. Crellin1, Julian I. Rood1
1Department of Microbiology, Monash University, Clayton 316S, Victoria, Australia.
2Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA

Tóm tắt

Summary

The chloramphenicol‐resistance transposon Tn4451 undergoes precise conjugative deletion from its parent plasmid piP401 in Clostridium perfringens and precise spontaneous excision from multicopy plasmids in Escherichia coli. The complete nucleotide sequence of the 6338 bp transposon was determined and it was found to encode six genes. Genetic analysis demonstrated that the largest Tn4451‐encoded gene, tnpX, was required for the spontaneous excision of the transposon in both E. coli and C. perfringens, since a Tn4451 derivative that lacked a functional tnpX gene was completely stable in both organisms. Because the ability of this derivative to excise was restored by providing the tnpX gene on a compatible plasmid, it was concluded that this gene encoded a trans‐acting site‐specific recombinase. Allelic exchange was used to introduce the tnpXΔ allele onto plP401 and it was shown that TnpX was also required for the conjugative excision of Tn4451 in C. perfringens. It was also shown by hybridization and polymerase chain reaction (PCR) studies that TnpX‐mediated transposon excision resulted in the formation of a circular form of the transposon. The TnpX recombinase was unique because it potentially contained the motifs of two independent site‐specific recombinase families, namely the resolvase/invertase and integrase families. Sequence analysis indicated that the resolvase/invertase domain of TnpX was likely to be involved in the excision process by catalysing the formation of a 2bp staggered nick on either side of the GA dinucleotide located at the ends of the transposon and at the junction of the circular form. The other Tn4451‐encoded genes include tnpZ, which appears to encode a second potential site‐specific recombinase. This protein has similarity to plasmid‐encoded Mob/Pre proteins, which are involved in plasmid mobilization and multimer formation. Located upstream of the tnpZ gene was a region with similarity to the site of interaction of these mobilization proteins.

Từ khóa


Tài liệu tham khảo

10.1128/jb.169.4.1579-1584.1987

10.1016/0147-619X(88)90055-8

10.1016/0147-619X(85)90030-7

10.1093/protein/5.1.87

10.1016/S0022-2836(05)80360-2

10.1111/j.1365-2958.1992.tb01351.x

10.1002/j.1460-2075.1986.tb04229.x

10.1111/j.1365-2958.1995.tb02234.x

10.1016/0378-1119(91)90541-I

10.1016/0378-1119(89)90491-5

10.1128/AAC.38.5.1041

10.1093/nar/7.6.1513

10.1016/0147-619X(77)90008-7

Cabot E.L., 1989, Simultaneous editing of multiple nucleic acid and protein sequences with ESEE, Comp Appl BioSci, 5, 233

Chin D.T., 1988, Sequence of the Ion gene in Escherichia coli, J Biol Chem, 263, 11718

10.1007/978-1-4757-9357-4_15

Clewell D.B., 1991, Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci, 39

10.1007/BF00333582

10.1111/j.1365-2958.1991.tb01964.x

Dayhoff M.O., 1978, Atlas of Protein Sequence and Structure, 345

10.1016/0003-2697(92)90280-K

10.1016/0022-2836(87)90681-4

Galas D.J., 1989, Mobile DNA, 109

10.1128/jb.173.17.5431-5438.1991

Gawron‐Burke C, 1984, Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from Gram‐positive bacteria, J Bacteriol, 159, 214, 10.1128/jb.159.1.214-221.1984

Gennaro M.L., 1987, A site‐specific recombination function in Staphylococcus aureus plasmids, J Bacteriol, 169, 2601, 10.1128/jb.169.6.2601-2610.1987

Glasgow A.C, 1989, Mobile DNA, 637

10.1146/annurev.bi.54.070185.004243

10.1038/286860a0

Hecht D.W., 1989, Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis, J Bacteriol, 171, 3603, 10.1128/jb.171.7.3603-3608.1989

10.1016/0092-8674(79)90228-9

Higgins D.G., 1992, CLU.STALV: improved software for multiple sequence alignment, Comput Appl Biosci, 8, 189

10.1073/pnas.77.5.2482

10.1016/0092-8674(85)90120-5

10.1093/nar/20.13.3279

Josson K., 1990, Lactobacillus hilgardii plasmid pLAB1000 consists of two functional cassettes commonly found in other Gram‐positive organisms, J Bacteriol, 172, 3089, 10.1128/jb.172.6.3089-3099.1990

10.1002/j.1460-2075.1988.tb02935.x

10.1101/gad.4.4.525

10.1111/j.1462-5822.2007.00901.x

10.1093/nar/17.18.7283

10.1016/0022-2836(86)90491-2

10.1002/j.1460-2075.1994.tb06416.x

10.1111/j.1365-2958.1994.tb01063.x

10.1093/nar/16.24.11827

10.1016/0163-7258(80)90031-5

10.1016/0147-619X(86)90046-6

10.1002/j.1460-2075.1988.tb02934.x

Miller J.H., 1972, Experiments in Molecular Genetics

10.1016/0168-1656(89)90129-6

Morelle G., 1989, A plasmid extraction procedure on a miniprep scale, Focus, 11, 7

Murphy C.G., 1993, Characterization of a ‘mobilization cassette’ in transposon Tn4399 from Bacteroides fragilis, J Bacteriol, 175, 5814, 10.1128/jb.175.18.5814-5823.1993

Murphy E., 1989, Mobile DNA, 269

10.1016/0147-619X(91)90034-T

10.1073/pnas.85.8.2444

10.1073/pnas.80.17.5355

10.1146/annurev.bi.55.070186.002011

10.1073/pnas.89.13.5991

10.1002/j.1460-2075.1989.tb08373.x

10.1111/j.1365-2958.1990.tb02062.x

10.1128/jb.171.9.4778-4784.1989

10.1101/SQB.1984.049.01.028

10.1038/300381a0

Roberts I., 1986, Modified plasmid isolation method for Clostridium perfringens and Clostridium absonum, Appl Environ Microbiol, 52, 197, 10.1128/aem.52.1.197-199.1986

10.1139/m83-193

10.1128/mr.55.4.621-648.1991

10.1128/AAC.13.5.871

10.1016/0147-619X(78)90013-6

10.1128/jb.159.3.1034-1039.1984

Sambrook J., 1989, Molecular Cloning. A Laboratory Manual

10.1073/pnas.74.12.5463

Sato T., 1990, The cisA cistron of Bacillus subtilis sporulation gene spoIVC encodes a protein homologous to a site‐specific recombinase, J Bacteriol, 172, 1092, 10.1128/jb.172.2.1092-1098.1990

10.1128/9781555818388.ch41

10.1016/0378-1119(89)90059-0

Selinger L.B., 1990, Mobilisation of closely related plasmids pUB110 and pBC16 by Bacillus plasmid pXO503 requires trans‐acting open reading frame β, J Bacteriol, 172, 3290, 10.1128/jb.172.6.3290-3297.1990

Sherratt D., 1989, Mobile DNA, 163

10.1016/0147-619X(92)90023-4

10.1128/jb.175.9.2682-2691.1993

10.1016/0378-1119(89)90282-5

10.1016/0022-2836(86)90228-7

10.1126/science.2536191

10.1073/pnas.82.4.1074

Tominaga A., 1991, Site‐specific recombinase genes in three Shigella subgroups and nucleotide sequences of a pinB gene and an invertible B segment from Shigella boydii, J Bacteriol, 173, 4079, 10.1128/jb.173.13.4079-4087.1991

10.1016/0378-1119(82)90015-4

10.1002/j.1460-2075.1982.tb01276.x

10.1111/j.1365-2958.1993.tb01242.x

10.1073/pnas.77.7.4196