High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks
Tài liệu tham khảo
Lee, 2011, A novel tin oxide-based recoverable thick film SO2gas sensor promoted with magnesium and vanadium oxides, Sensors Actuators, B Chem., 160, 1328, 10.1016/j.snb.2011.09.070
Das, 2008, Vanadium doped tin dioxide as a novel sulfur dioxide sensor, Talanta, 75, 385, 10.1016/j.talanta.2007.11.010
Qu, 2018, Self-template derived ZnFe2O4 double-shell microspheres for chemresistive gas sensing, Sensors Actuators, B Chem., 265, 625, 10.1016/j.snb.2018.03.108
Kim, 2014, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview, Sensors Actuators, B Chem., 192, 607, 10.1016/j.snb.2013.11.005
Dey, 2018, Semiconductor metal oxide gas sensors: a review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 229, 206, 10.1016/j.mseb.2017.12.036
Barsan, 2001, Conduction model of metal oxide gas sensors, J. Electroceramics., 7, 143, 10.1023/A:1014405811371
Hernandez-Ramirez, 2009, Metal oxide nanowire gas sensors, Sensors Mater., 21, 219
Pijolat, 2013, Metal oxide gas sensors, Chem. Sensors Biosens, 93
Mirzaei, 2016, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review, Ceram. Int., 42, 15119, 10.1016/j.ceramint.2016.06.145
Lee, 2009, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sensors Actuators, B Chem., 140, 319, 10.1016/j.snb.2009.04.026
Yao, 2018, Influence of initial Cu/(Zn+Sn) concentration ratio in Cu–Zn–Sn–S composites on their microstructures, adsorption and visible-light-Sensitive photocatalytic activities, Sci. Adv. Mater., 10, 1381, 10.1166/sam.2018.3350
Zhang, 2017, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration, Phys. Chem. Chem. Phys., 19, 6313, 10.1039/C6CP07799D
Lin, 2017, The morphologies of the semiconductor oxides and their gas-sensing properties, Sensors (Switzerland)., 17, 10.3390/s17122779
Wang, 2010, Metal oxide gas sensors: sensitivity and influencing factors, Sensors, 10, 2088, 10.3390/s100302088
Lee, 2018, Technological realization of semiconducting metal oxide–based gas sensors, Gas Sensors Based Conduct. Met. Oxides, 167
Tyagi, 2016, Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor, Sensors Actuators, B Chem., 224, 282, 10.1016/j.snb.2015.10.050
Tyagi, 2017, SnO2 thin film sensor having NiO catalyst for detection of SO2 gas with improved response characteristics, Sensors Actuators, B Chem., 248, 998, 10.1016/j.snb.2017.02.168
Zhou, 2016, Hydrothermal synthesis and responsive characteristics of hierarchical zinc oxide nanoflowers to sulfur dioxide, J. Nanotechnol., 2016, 10.1155/2016/6742104
Zhang, 2018, Enhanced gas sensing properties based on ZnO-Decorated nickel oxide thin films for formaldehyde detection, Sci. Adv. Mater., 10, 373, 10.1166/sam.2018.2987
Latyshev, 2017, Nanostructured ZnO films for potential use in LPG gas sensors, Solid State Sci., 67, 109, 10.1016/j.solidstatesciences.2017.02.010
Nam, 2018, Cadmium chloride-assisted ZnO nanorod regrowth for enhanced photoluminescence and ultraviolet sensing properties, Sci. Adv. Mater., 10, 397, 10.1166/sam.2018.3034
Galstyan, 2015, Nanostructured ZnO chemical gas sensors, Ceram. Int., 41, 14239, 10.1016/j.ceramint.2015.07.052
Kumar, 2015, Zinc oxide nanostructures for NO2 gas sensor applications: a review, Nano-Micro Lett., 7, 97, 10.1007/s40820-014-0023-3
Nam, 2018, Regrowth of spin-coated Al-Doped ZnO films to enhance their photoluminescence and UV sensing properties, Sci. Adv. Mater., 10, 401, 10.1166/sam.2018.3035
Leonardi, 2017, Two-dimensional zinc oxide nanostructures for gas sensor applications, Chemosensors, 5, 17, 10.3390/chemosensors5020017
Nam, 2018, A New Technique for Growing ZnO Nanorods Over Large Surface Areas Using Graphene Oxide and Their Application in Ultraviolet Sensors, Sci. Adv. Mater., 10, 405, 10.1166/sam.2018.3036
Hastir, 2017, Ag doped ZnO nanowires as highly sensitive ethanol gas sensor, Mater. Today Proc., 9476, 10.1016/j.matpr.2017.06.207
Xu, 2015, Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures, Sensors Actuators, B Chem., 213, 222, 10.1016/j.snb.2015.02.073
Al-Hardan, 2013, Performance of Cr-doped ZnO for acetone sensing, Appl. Surf. Sci., 270, 480, 10.1016/j.apsusc.2013.01.064
Qi, 2015, High performance indium-doped ZnO gas sensor, J. Nanomater., 2015, 10.1155/2015/954747
Ahmed, 2013, Mn-doped ZnO nanorod gas sensor for oxygen detection, Curr. Appl. Phys., 13, 10.1016/j.cap.2012.12.029
Runa, 2018, Actinomorphic flower-like n-ZnO/p-ZnFe<inf>2</inf>O<inf>4</inf>composite and its improved NO<inf>2</inf>gas-sensing property, Mater. Lett., 225, 10.1016/j.matlet.2018.04.087
Park, 2016, Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor, Sensors Actuators B Chem., 222, 1193, 10.1016/j.snb.2015.08.006
Liu, 2017, Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material, Sensors Actuators B Chem., 245, 551, 10.1016/j.snb.2017.01.148
Poloju, 2018, Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 227, 61, 10.1016/j.mseb.2017.10.012
Liu, 2011, Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals, Sensors Actuators, B Chem., 156, 251, 10.1016/j.snb.2011.04.028
Miao, 2016, SDS-assisted hydrothermal synthesis of NiO flake-flower architectures with enhanced gas-sensing properties, Appl. Surf. Sci., 384, 304, 10.1016/j.apsusc.2016.05.070
Baratto, 2014, Gas sensing study of ZnO nanowire heterostructured with NiO for detection of pollutant gases, Procedia Eng., 1091, 10.1016/j.proeng.2014.11.354
Deng, 2017, ZnO enhanced NiO-based gas sensors towards ethanol, Mater. Res. Bull., 90, 170, 10.1016/j.materresbull.2017.02.040
Xu, 2012, NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties, Inorg. Chem., 51, 7733, 10.1021/ic300749a
Qu, 2016, High and fast H<inf>2</inf>S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor, Sensors Actuators, B Chem., 222, 78, 10.1016/j.snb.2015.08.058
Ju, 2014, Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction, Sensors Actuators, B Chem., 200, 288, 10.1016/j.snb.2014.04.029
Kwak, 2014, Selective trimethylamine sensors using Cr2O3- decorated SnO2 nanowires, Sensors Actuators, B Chem., 204, 231, 10.1016/j.snb.2014.07.084
Nakate, 2019, Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures, J. Alloys. Compd., 797, 456, 10.1016/j.jallcom.2019.05.111
Xu, 2015, Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors, Nanoscale, 7, 16932, 10.1039/C5NR04449A
EI-Safty, 2008, Synthesis, characterization and catalytic activity of highly ordered hexagonal and cubic composite monoliths, J. Colloid Interface Sci., 319, 477, 10.1016/j.jcis.2007.12.010
Liu, 2016, Facile synthesis and gas sensing properties of the flower-like NiO-decorated ZnO microstructures, Sensors Actuators, B Chem., 235, 294, 10.1016/j.snb.2016.05.064
Lu, 2017, Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor, Ceram. Int., 43, 7508, 10.1016/j.ceramint.2017.03.032
Liu, 2016, Template-free synthesis of in 2 O 3 nanoparticles and their acetone sensing properties, Mater. Lett., 182, 340, 10.1016/j.matlet.2016.07.064
Zhang, 2019, An acetone gas sensor based on nanosized Pt-loaded Fe 2 O 3 nanocubes, Sensors Actuators, B Chem., 59, 10.1016/j.snb.2019.03.082
Lokesh, 2016, Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers, IEEE Sens. J., 16, 2477, 10.1109/JSEN.2016.2517085
Wang, 2015, Ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals, ACS Appl. Mater. Interfaces, 7, 3816, 10.1021/am508807a
Jayababu, 2019, Synthesis of ZnO/NiO nanocomposites for the rapid detection of ammonia at room temperature, Mater. Sci. Semicond. Process., 102, 10.1016/j.mssp.2019.104591
Hoa, 2014, Fabrication of novel 2D NiO nanosheet branched on 1D-ZnO nanorod arrays for gas sensor application, J. Nanomater., 2014, 10.1155/2014/710874
Qu, 2019, Hierarchical Co 3 O 4 @NiMoO 4 core-shell nanowires for chemiresistive sensing of xylene vapor, Microchim. Acta., 186, 10.1007/s00604-019-3335-7
Qu, 2018, Coordination polymer-derived multishelled mixed Ni-Co oxide microspheres for robust and selective detection of xylene, ACS Appl. Mater. Interfaces, 10, 15314, 10.1021/acsami.8b03487
Della Gaspera, 2011, ZnO-NiO thin films containing au nanoparticles for CO optical sensing, Sens. Lett., 9, 600, 10.1166/sl.2011.1571
Ibrahim, 2016, Sm2O3-doped ZnO beech fern hierarchical structures for nitroaniline chemical sensor, Ceram. Int., 42, 16505, 10.1016/j.ceramint.2016.07.061
Al-Hadeethi, 2017, 2D Sn-doped ZnO ultrathin nanosheet networks for enhanced acetone gas sensing application, Ceram. Int., 43, 2418, 10.1016/j.ceramint.2016.11.031
Ritika, 2018, Alothman, Rapid solar-light driven superior photocatalytic degradation of methylene blue using MoS2 -ZnO heterostructure nanorods photocatalyst, Materials (Basel)., 11, 2254, 10.3390/ma11112254
Zhou, 2018, Fabrication and characterization of highly sensitive and selective sensors based on porous NiO nanodisks, Sens. Actuators B Chem., 259, 604, 10.1016/j.snb.2017.12.050
Ibrahim, 2018, Highly sensitive and selective non-enzymatic monosaccharide and disaccharide sugar sensing based on carbon paste electrodes modified with perforated NiO nanosheets, New J. Chem., 42, 964, 10.1039/C7NJ03253F
Zhou, 2018, Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials, Ceram. Int., 44, 4392, 10.1016/j.ceramint.2017.12.038
Mehrzad, 2018, Synthesis and Photocatalytic Activity of TiO2Monodisperse Nanoparticles at Low Temperatures, J. Nanoelectron. Optoelectron., 13, 156, 10.1166/jno.2018.2226
Chaudhary, 2018, NiO nanodisks: highly efficient visible-light driven photocatalyst, potential scaffold for seed germination of Vigna Radiata and antibacterial properties, J. Clean. Prod., 190, 563, 10.1016/j.jclepro.2018.04.110
Guo, 2013, Hierarchical ZnO porous microspheres and their gas-sensing properties, Ceram. Int., 39, 5919, 10.1016/j.ceramint.2013.01.014
Song, 2018, Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration, Chem. Phys. Lett., 699, 1, 10.1016/j.cplett.2018.03.021
Liu, 2017, Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p–n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2, Sensors (Switzerland)., 17
Lamba, 2015, Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material, Talanta, 131, 490, 10.1016/j.talanta.2014.07.096
Lee, 2018, Shape control of Zn2SnO4 /SnO2 composites and changes in photocatalytic efficiency, Sci. Adv. Mater., 10, 1045, 10.1166/sam.2018.3301