A Bayesian unsupervised learning approach for identifying soil stratification using cone penetration data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barnard J., 2000, Statistica Sinica, 10, 1281
Briaud, J.L. 2000. The national geotechnical experimentation sites at Texas A&M University: clay and sand, a summary.InNational Geotechnical Experimentation Sites. Geotechnical Special Publication 93. ASCE. pp. 26–51. 10.1061/9780784404843.ch02.
Ching J.Y., 2017, Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, ASCE-ASME, 3, 04017021, 10.1061/AJRUA6.0000926
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., and Rubin, D.B. 2014. Bayesian data analysis. CRC Press, Boca Raton, Fla.
McLachlan, G.J., and Basford, K.E. 1988. Mixture models. Inference and applications to clustering.InStatistics: textbooks and monographs. Vol. 1. Dekker, New York.
McLachlan, G.J., and Krishnan, T. 2007. The EM algorithm and extensions. Wiley-Interscience, New York.
McLachlan, G., and Peel, D. 2004. Finite mixture models. John Wiley & Sons, Hoboken, N.J.
Pedregosa F., 2011, Journal of Machine Learning Research, 12, 2825