Complete chloroplast genome of Gracilaria firma (Gracilariaceae, Rhodophyta), with discussion on the use of chloroplast phylogenomics in the subclass Rhodymeniophycidae

Springer Science and Business Media LLC - Tập 18 - Trang 1-16 - 2017
Poh-Kheng Ng1, Showe-Mei Lin1, Phaik-Eem Lim2, Li-Chia Liu1, Chien-Ming Chen3, Tun-Wen Pai3
1Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
2Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
3Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan

Tóm tắt

The chloroplast genome of Gracilaria firma was sequenced in view of its role as an economically important marine crop with wide industrial applications. To date, there are only 15 chloroplast genomes published for the Florideophyceae. Apart from presenting the complete chloroplast genome of G. firma, this study also assessed the utility of genome-scale data to address the phylogenetic relationships within the subclass Rhodymeniophycidae. The synteny and genome structure of the chloroplast genomes across the taxa of Eurhodophytina was also examined. The chloroplast genome of Gracilaria firma maps as a circular molecule of 187,001 bp and contains 252 genes, which are distributed on both strands and consist of 35 RNA genes (3 rRNAs, 30 tRNAs, tmRNA and a ribonuclease P RNA component) and 217 protein-coding genes, including the unidentified open reading frames. The chloroplast genome of G. firma is by far the largest reported for Gracilariaceae, featuring a unique intergenic region of about 7000 bp with discontinuous vestiges of red algal plasmid DNA sequences interspersed between the nblA and cpeB genes. This chloroplast genome shows similar gene content and order to other Florideophycean taxa. Phylogenomic analyses based on the concatenated amino acid sequences of 146 protein-coding genes confirmed the monophyly of the classes Bangiophyceae and Florideophyceae with full nodal support. Relationships within the subclass Rhodymeniophycidae in Florideophyceae received moderate to strong nodal support, and the monotypic family of Gracilariales were resolved with maximum support. Chloroplast genomes hold substantial information that can be tapped for resolving the phylogenetic relationships of difficult regions in the Rhodymeniophycidae, which are perceived to have experienced rapid radiation and thus received low nodal support, as exemplified in this study. The present study shows that chloroplast genome of G. firma could serve as a key link to the full resolution of Gracilaria sensu lato complex and recognition of Hydropuntia as a genus distinct from Gracilaria sensu stricto.

Tài liệu tham khảo

Saunders GW, Hommersand MH. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am J Bot. 2004;91:1494–507. Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D. Defining the major lineages of red algae (Rhodophyta). J Phycol. 2006;42:482–92. Guiry MD, Guiry GM. Algaebase. World-wide electronic publication, National University of Ireland, Galway. 2016. http://www.algaebase.org. Accessed 15 Jun 2016. Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, et al. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One. 2013;8:e59001. Du QW, Bi GQ, Mao YX, Sui ZH. The complete chloroplast genome of Gracilariopsis lemaneiformis (Rhodophyta) gives new insight into the evolution of family Gracilariaceae. J Phycol. 2016;52(3):441–50. Lee J, Kim KM, Yang EC, Miller KA, Boo SM, Bhattacharya D, et al. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Sci Rep. 2016;6:23744. Chang CF, Xia BM. Taxonomic studies on Gracilaria from China. Stud Mar Sinica. 1976;11:91–163. Terada R, Baba M, Yamamoto H. New record of Gracilaria firma Chang et Xia (Rhodophyta) from Okinawa, Japan. Phycol Res. 2000;48(4):291–4. Lin SM. Marine benthic macroalgal flora of Taiwan: Part I Order Gracilariales (Rhodophyta). 1st ed. Keelung: National Taiwan Ocean University; 2009. Ajisaka T, Chiang YM. Recent status of Gracilaria cultivation in Taiwan. Hydrobiologia. 1993;260/261:335–8. Titlyanov EA, Titlyanova TV, Oham VH. Stocks and the use of economic marine macrophytes of Vietnam. Russ J Mar Biol. 2012;38:285–98. Trono GC. Diversity of the seaweed flora of the Philippines and its utilization. Hydrobiologia. 1999;398/399:1–6. Arano KG, Trono GC, Montano NE, Hurtado AQ, Villanueva RD. Growth, agar yield and quality of selected agarophyte species from the Philippines. Bot Mar. 2000;43(6):517–24. Gurgel CFD, Fredericq S. Systematics of the Gracilariaceae (Gracilariales, Rhodophyta): a critical assessment based on rbcL sequence analyses. J Phycol. 2004;40:138–59. Bird CJ, Rice EL, Murphy CA, Ragan MA. Phylogenetic relationships in the Gracilariales (Rhodophyta) as determined by 18S rDNA sequences. Phycologia. 1992;31(6):510–22. Lyra GM, Costa ES, Jesus PB, Matos JC, Caires TA, Oliveira MC, et al. Phylogeny of Gracilariaceae (Rhodophyta): evidence from plastid and mitochondrial nucleotide sequences. J Phycol. 2015;51(2):356–66. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–23. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD, Birol I. Sealer: a scalable gap-closing application for finishing draft genomes. BMC Bioinformatics. 2015;16:230. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92. Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomics sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8. Hunter SS, Lyon RT, Sarver BAJ, Hardwick K, Forney LJ, Settles ML. Assembly by reduced complexity (ARC): a hybrid approach for targeted assembly of homologous sequences. bioRxiv. 2015. http://dx.doi.org/10.1101/014662. Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004;20:3252–325. Lagesen K, Hallin P, Rødland EA, Stærfeldt H, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8. Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64. Laslett D, Canback B. ARAGORN, a program for the detection of transfer RNA and transfer-messenger RNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–6. Lang BF, Laforest M, Burger G. Mitochondrial introns: A critical view. Trends Genet. 2007;23:119–25. Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW) – a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007;52:267–74. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394–403. Cox CJ, Li B, Foster PG, Embley TM, Civáň P. Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst Biol. 2014;63(2):272–9. Philippe H, Brunkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, et al. Resolving difficult phylogenetic questions: Why more sequences are not enough. PLoS Biol. 2009;9(3):e1000602. Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;31:W465–9. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:1–4. Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, Oliveira MC. Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of Rhodoplasts and their relationship to other plastids. J Mol Evol. 2004;59:464–77. Verbruggen H, Costa JF. The plastid genome of the red alga Laurencia. J Phycol. 2015;51:586–9. Ohta N, Matsuzaki M, Misumi O, Miyagishima SY, Nozaki H, Tanaka K, et al. Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res. 2003;10:67–77. Campbell MA, Presting G, Bennett MS, Sherwood AR. Highly conserved organellar genomes in the Gracilariales as inferred using new data from the Hawaiian invasive alga Gracilaria salicornia (Rhodophyta). Phycologia. 2014;53:109–16. DePriest MS, Bhattacharya D, López-Bautista JM. The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae). PLoS One. 2013;8:e68246. Salomaki ED, Nickles KR, Lane CE. The ghost plastid of Choreocolax polysiphoniae. J Phycol. 2015;51:217–21. Wang L, Mao YX, Kong FN, Li GY, Ma F, Zhang BL, et al. Complete sequence and analysis of plastid genome of two economically important red alga–Pyropia haitanensis and Pyropia yezoensis. PLoS One. 2013;8:e65902. Lang BF, Nedelcu A. Plastid Genomes of Algae. In: Bock R, Knoop V, editors. Genomics of chloroplasts and mitochondria. Netherlands: Springer; 2012. p. 59–87. Hughey JR, Gabrielson PW, Rohmer L, Tortolani J, Silva M, Miller KA, et al. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes. Sci Rep. 2014;4:5113. Yang EC, Boo SM, Bhattacharya D, Saunders GW, Knoll AH, Fredericq S, et al. Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Sci Rep. 2016;6:21361. Yang EC, Kim KM, Kim SY, Lee J, Boo GH, Lee J, et al. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biol Evol. 2015;7(8):2394–406. Saunders GW, Filloramo G, Dixon K, Le Gall L, Maggs CA, Kraft GT. Multigene analyses resolve early diverging lineages in the Rhodymeniophycidae (Florideophyceae, Rhodophyta). J Phycol. 2016. doi:10.1111/jpy.12426. Verbruggen H, Maggs CA, Saunders GW, Le Gall L, Yoon HS, De Clerck O. Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evol Biol. 2010;10:16. Le NH, Lin SM. The discontinuous geographic distribution of Gracilaria firma (Gracilariaceae, Rhodophyta) from the Gulf of Tonkin to the Gulf of Thailand along the coastlines of Vietnam. Vietnamese J Biotechnol. 2005;3(3):373–80. Verbruggen H, Theriot EC. Building trees of algae: some advances in phylogenetic and evolutionary analysis. Eur J Phycol. 2008;43(3):229–52. Wrobel B. Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J Appl Genet. 2008;49:49–67. Simmons MP, Norton AP. Divergent maximum-likelihood-branch-support values for polytomies. Mol Phylogenet Evol. 2014;73:87–96. Glöckner G, Rosenthal A, Valentin K. The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol. 2000;51:382–90. Tajima N, Sato S, Maruyama F, Kurokawa K, Ohta H, Tabata S, et al. Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum. J Plant Res. 2014;127:389–97. Smith DR, Hua J, Lee RW, Keeling PJ. Relative rates of evolution among the three genetic compartments of the red alga Porphyra differ from those of green plants and do not correlate with genome architecture. Mol Phylogenet Evol. 2012;65:339–44. Hughey JR. Genomic and phylogenetic analysis of the complete plastid genome of the California endemic seaweed Wildemania schizophylla. Madrono. 2016;63(1):34–8. Zhang Y, Guo Y-M, Li T-J, Chen C-H, Shen K-N, Hsiao C-D. The complete chloroplast genome of Gracilariopsis lemaneiformis, an important economic red alga of the family Gracilariaceae. Mitochondrial DNA B Resour. 2016;1(1):2–3. Kilpatrick ZM, Hughey JR. Mitochondrial and plastid genome analysis of the marine red alga Coeloseira compressa (Champiaceae, Rhodophyta). Mitochondrial DNA B Resour. 2016;1(1):456–8.