Long-term dynamic compression enhancement TGF-β3-induced chondrogenesis in bovine stem cells: a gene expression analysis
Tóm tắt
Bioengineering has demonstrated the potential of utilising mesenchymal stem cells (MSCs), growth factors, and mechanical stimuli to treat cartilage defects. However, the underlying genes and pathways are largely unclear. This is the first study on screening and identifying the hub genes involved in mechanically enhanced chondrogenesis and their potential molecular mechanisms. The datasets were downloaded from the Gene Expression Omnibus (GEO) database and contain six transforming growth factor-beta-3 (TGF-β3) induced bovine bone marrow-derived MSCs specimens and six TGF-β3/dynamic-compression-induced specimens at day 42. Screening differentially expressed genes (DEGs) was performed and then analysed via bioinformatics methods. The Database for Annotation, Visualisation, and Integrated Discovery (DAVID) online analysis was utilised to obtain the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) network of the DEGs was constructed based on data from the STRING database and visualised through the Cytoscape software. The functional modules were extracted from the PPI network for further analysis. The top 10 hub genes ranked by their connection degrees were IL6, UBE2C, TOP2A, MCM4, PLK2, SMC2, BMP2, LMO7, TRIM36, and MAPK8. Multiple signalling pathways (including the PI3K-Akt signalling pathway, the toll-like receptor signalling pathway, the TNF signalling pathway, and the MAPK pathway) may impact the sensation, transduction, and reaction of external mechanical stimuli. This study provides a theoretical finding showing that gene UBE2C, IL6, and MAPK8, and multiple signalling pathways may play pivotal roles in dynamic compression-enhanced chondrogenesis.
Tài liệu tham khảo
Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, Weiss P, Guicheux J, Noel D. Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther. 2009;4(4):318–29. https://doi.org/10.2174/157488809789649205.
Roato I, Belisario DC, Compagno M, Lena A, Bistolfi A, Maccari L, Mussano F, Genova T, Godio L, Perale G, Formica M, Cambieri I, Castagnoli C, Robba T, Felli L, Ferracini R. Concentrated adipose tissue infusion for the treatment of knee osteoarthritis: clinical and histological observations. Int Orthop. 2019;43(1):15–23. https://doi.org/10.1007/s00264-018-4192-4.
Ham O, Lee CY, Kim R, Lee J, Oh S, Lee MY, Kim J, Hwang KC, Maeng LS, Chang W. Therapeutic potential of differentiated Mesenchymal stem cells for treatment of osteoarthritis. Int J Mol Sci. 2015;16(7):14961–78. https://doi.org/10.3390/ijms160714961.
Zhang R, Ma J, Han J, Zhang W, Ma J. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am J Transl Res. 2019;11(10):6275–89.
Zhou M, Lozano N, Wychowaniec JK, Hodgkinson T, Richardson SM, Kostarelos K, Hoyland JA. Graphene oxide: a growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater. 2019;96:271–80. https://doi.org/10.1016/j.actbio.2019.07.027.
Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238(1):265–72. https://doi.org/10.1006/excr.1997.3858.
Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ, Tuan RS. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem. 2003;278(42):41227–36. https://doi.org/10.1074/jbc.M305312200.
Pfeifer CG, Karl A, Kerschbaum M, Berner A, Lang S, Schupfner R, Koch M, Angele P, Nerlich M, Mueller MB. TGF-beta Signalling is suppressed under pro-hypertrophic conditions in MSC Chondrogenesis due to TGF-beta receptor Downregulation. Int J Stem Cells. 2019;12(1):139–50. https://doi.org/10.15283/ijsc18088.
Schatti O, Grad S, Goldhahn J, Salzmann G, Li Z, Alini M, Stoddart MJ. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cell Mater. 2011;22:214–25. https://doi.org/10.22203/eCM.v022a17.
Sjaastad MD, Lewis RS, Nelson WJ. Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and store-independent calcium influx. Mol Biol Cell. 1996;7(7):1025–41. https://doi.org/10.1091/mbc.7.7.1025.
Pommerenke H, Schmidt C, Durr F, Nebe B, Luthen F, Muller P, Rychly J. The mode of mechanical integrin stressing controls intracellular signaling in osteoblasts. J Bone Miner Res. 2002;17(4):603–11. https://doi.org/10.1359/jbmr.2002.17.4.603.
Grad S, Eglin D, Alini M, Stoddart MJ. Physical stimulation of chondrogenic cells in vitro: a review. Clin Orthop Relat Res. 2011;469(10):2764–72. https://doi.org/10.1007/s11999-011-1819-9.
Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature. 2000;405(6788):827–36. https://doi.org/10.1038/35015701.
Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5.
Huang AH, Farrell MJ, Kim M, Mauck RL. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur Cell Mater. 2010;19:72–85. https://doi.org/10.22203/eCM.v019a08.
Wang W, Rigueur D, Lyons KM. TGFbeta signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today. 2014;102(1):37–51. https://doi.org/10.1002/bdrc.21058.
Chiang H, Hsieh CH, Lin YH, Lin S, Tsai-Wu JJ, Jiang CC. Differences between chondrocytes and bone marrow-derived chondrogenic cells. Tissue Eng Part A. 2011;17(23–24):2919–29. https://doi.org/10.1089/ten.tea.2010.0732.
Aisenbrey EA, Bilousova G, Payne K, Bryant SJ. Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel. Biomater Sci. 2019;7(12):5388–403. https://doi.org/10.1039/C9BM01081E.
Torzilli PA, Bhargava M, Chen CT. Mechanical loading of articular cartilage reduces IL-1-induced enzyme expression. Cartilage. 2011;2(4):364–73. https://doi.org/10.1177/1947603511407484.
Responte DJ, Lee JK, Hu JC, Athanasiou KA. Biomechanics-driven chondrogenesis: from embryo to adult. FASEB J. 2012;26(9):3614–24. https://doi.org/10.1096/fj.12-207241.
Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury. 2011;42(6):556–61. https://doi.org/10.1016/j.injury.2011.03.035.
Geris L, Vandamme K, Naert I, Vander Sloten J, Van Oosterwyck H, Duyck J. Mechanical loading affects angiogenesis and osteogenesis in an in vivo bone chamber: a modeling study. Tissue Eng Part A. 2010;16(11):3353–61. https://doi.org/10.1089/ten.tea.2010.0130.
Bai Y, Gong X, Dou C, Cao Z, Dong S. Redox control of chondrocyte differentiation and chondrogenesis. Free Radic Biol Med. 2019;132:83–9. https://doi.org/10.1016/j.freeradbiomed.2018.10.443.
Ulici V, Hoenselaar KD, Gillespie JR, Beier F. The PI3K pathway regulates endochondral bone growth through control of hypertrophic chondrocyte differentiation. BMC Dev Biol. 2008;8(1):40. https://doi.org/10.1186/1471-213X-8-40.
Najar M, Krayem M, Meuleman N, Bron D, Lagneaux L. Mesenchymal stromal cells and toll-like receptor priming: a critical review. Immune Netw. 2017;17(2):89–102. https://doi.org/10.4110/in.2017.17.2.89.
Shirjang S, Mansoori B, Solali S, Hagh MF, Shamsasenjan K. Toll-like receptors as a key regulator of mesenchymal stem cell function: an up-to-date review. Cell Immunol. 2017;315:1–10. https://doi.org/10.1016/j.cellimm.2016.12.005.
Huan X, Jinhe Y, Rongzong Z. Identification of pivotal genes and pathways in osteoarthritic degenerative meniscal lesions via bioinformatics analysis of the GSE52042 dataset. Med Sci Monit. 2019;25:8891–904. https://doi.org/10.12659/MSM.920636.
Dunn SL, Soul J, Anand S, Schwartz JM, Boot-Handford RP, Hardingham TE. Gene expression changes in damaged osteoarthritic cartilage identify a signature of non-chondrogenic and mechanical responses. Osteoarthr Cartil. 2016;24(8):1431–40. https://doi.org/10.1016/j.joca.2016.03.007.
Yang J, Wang N. Genome-wide expression and methylation profiles reveal candidate genes and biological processes underlying synovial inflammatory tissue of patients with osteoarthritis. Int J Rheum Dis. 2015;18(7):783–90. https://doi.org/10.1111/1756-185X.12643.
Liu W, Zha Z, Wang H. Upregulation of microRNA-27a inhibits synovial angiogenesis and chondrocyte apoptosis in knee osteoarthritis rats through the inhibition of PLK2. J Cell Physiol. 2019;234(12):22972–84. https://doi.org/10.1002/jcp.28858.
Cohen-Zinder M, Karasik D, Onn I. Structural maintenance of chromosome complexes and bone development: the beginning of a wonderful relationship? Bonekey Rep. 2013;2:388.
Miyajima N, Maruyama S, Nonomura K, Hatakeyama S. TRIM36 interacts with the kinetochore protein CENP-H and delays cell cycle progression. Biochem Biophys Res Commun. 2009;381(3):383–7. https://doi.org/10.1016/j.bbrc.2009.02.059.
Wei H, Shen G, Deng X, Lou D, Sun B, Wu H, Long L, Ding T, Zhao J. The role of IL-6 in bone marrow (BM)-derived mesenchymal stem cells (MSCs) proliferation and chondrogenesis. Cell Tissue Bank. 2013;14(4):699–706. https://doi.org/10.1007/s10561-012-9354-9.
Nakajima S, Naruto T, Miyamae T, Imagawa T, Mori M, Nishimaki S, Yokota S. Interleukin-6 inhibits early differentiation of ATDC5 chondrogenic progenitor cells. Cytokine. 2009;47(2):91–7. https://doi.org/10.1016/j.cyto.2009.05.002.
Kondo M, Yamaoka K, Sakata K, Sonomoto K, Lin L, Nakano K, Tanaka Y. Contribution of the Interleukin-6/STAT-3 signaling pathway to Chondrogenic differentiation of human Mesenchymal stem cells. Arthritis Rheumatol. 2015;67(5):1250–60. https://doi.org/10.1002/art.39036.
Zhang Y, Pizzute T, Pei M. A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell Tissue Res. 2014;358(3):633–49. https://doi.org/10.1007/s00441-014-2010-x.
Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239–52. https://doi.org/10.1016/S0092-8674(00)00116-1.
Barash Y, Dehan E, Krupsky M, Franklin W, Geraci M, Friedman N, Kaminski N. Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays. Bioinformatics. 2004;20(6):839–46. https://doi.org/10.1093/bioinformatics/btg487.
Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234–41. https://doi.org/10.1093/nar/gkz240.
Huang da W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1–13.
Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44–57.
Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C. STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37(Database issue):D412–6. https://doi.org/10.1093/nar/gkn760.