Automated 4D flow cardiac MRI pipeline to derive peak mitral inflow diastolic velocities using short-axis cine stack: two centre validation study against echocardiographic pulse-wave doppler
Tóm tắt
Measurement of peak velocities is important in the evaluation of heart failure. This study compared the performance of automated 4D flow cardiac MRI (CMR) with traditional transthoracic Doppler echocardiography (TTE) for the measurement of mitral inflow peak diastolic velocities. Patients with Doppler echocardiography and 4D flow cardiac magnetic resonance data were included retrospectively. An established automated technique was used to segment the left ventricular transvalvular flow using short-axis cine stack of images. Peak mitral E-wave and peak mitral A-wave velocities were automatically derived using in-plane velocity maps of transvalvular flow. Additionally, we checked the agreement between peak mitral E-wave velocity derived by 4D flow CMR and Doppler echocardiography in patients with sinus rhythm and atrial fibrillation (AF) separately. Forty-eight patients were included (median age 69 years, IQR 63 to 76; 46% female). Data were split into three groups according to heart rhythm. The median peak E-wave mitral inflow velocity by automated 4D flow CMR was comparable with Doppler echocardiography in all patients (0.90 ± 0.43 m/s vs 0.94 ± 0.48 m/s, P = 0.132), sinus rhythm-only group (0.88 ± 0.35 m/s vs 0.86 ± 0.38 m/s, P = 0.54) and in AF-only group (1.33 ± 0.56 m/s vs 1.18 ± 0.47 m/s, P = 0.06). Peak A-wave mitral inflow velocity results had no significant difference between Doppler TTE and automated 4D flow CMR (0.81 ± 0.44 m/s vs 0.81 ± 0.53 m/s, P = 0.09) in all patients and sinus rhythm-only groups. Automated 4D flow CMR showed a significant correlation with TTE for measurement of peak E-wave in all patients group (r = 0.73, P < 0.001) and peak A-wave velocities (r = 0.88, P < 0.001). Moreover, there was a significant correlation between automated 4D flow CMR and TTE for peak-E wave velocity in sinus rhythm-only patients (r = 0.68, P < 0.001) and AF-only patients (r = 0.81, P = 0.014). Excellent intra-and inter-observer variability was demonstrated for both parameters. Automated dynamic peak mitral inflow diastolic velocity tracing using 4D flow CMR is comparable to Doppler echocardiography and has excellent repeatability for clinical use. However, 4D flow CMR can potentially underestimate peak velocity in patients with AF.
Tài liệu tham khảo
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond Engl. 2018;392(10159):1789–858.
Bragazzi NL, Zhong W, Shu J, Abu Much A, Lotan D, Grupper A, Younis A, Dai H. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol. 2021;28(15):1682–90.
Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9.
Brutsaert DL, Sys SU, Gillebert TC. Diastolic failure: Pathophysiology and therapeutic implications. J Am Coll Cardiol. 1993;22(1):318–25.
Garg P, Gosling R, Swoboda P, Jones R, Rothman A, Wild JM, Kiely DG, Condliffe R, Alabed S, Swift AJ. Cardiac magnetic resonance identifies raised left ventricular filling pressure: prognostic implications. Eur Heart J. 2022 May 4;ehac207.
Andersen OS, Smiseth OA, Dokainish H, Abudiab MM, Schutt RC, Kumar A, Sato K, Harb S, Gude E, Remme EW, Andreassen AK, Ha JW, Xu J, Klein AL, Nagueh SF. Estimating left ventricular filling pressure by echocardiography. J Am Coll Cardiol. 2017;69(15):1937–48.
Mitter SS, Shah SJ, Thomas JD. A test in context: E/A and E/e’ to assess diastolic dysfunction and LV filling pressure. J Am Coll Cardiol. 2017;69(11):1451–64.
Gardner BI, Bingham SE, Allen MR, Blatter DD, Anderson JL. Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. Cardiovasc Ultrasound. 2009;18(7):38.
Grothues F, Smith GC, Moon JCC, Bellenger NG, Collins P, Klein HU, Pennell DJ. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29–34.
Archer GT, Elhawaz A, Barker N, Fidock B, Rothman A, van der Geest RJ, Hose R, Briffa N, Hall IR, Grech E, Bissell M, Al-Mohammad A, Treibel TA, Swift AJ, Wild JM, Garg P. Validation of four-dimensional flow cardiovascular magnetic resonance for aortic stenosis assessment. Sci Rep. 2020;10(1):10569.
Fidock B, Barker N, Balasubramanian N, Archer G, Fent G, Al-Mohammad A, Richardson J, O’Toole L, Briffa N, Rothman A, van der Geest R, Hose R, Wild JM, Swift AJ, Garg P. A systematic review of 4D-flow MRI derived mitral regurgitation quantification methods. Front Cardiovasc Med. 2019;6:103.
Njoku P, Wardley J, Garg P. Streamline-based three-dimensional peak-velocity tracing of transvalvular flow using four-dimensional flow cardiac magnetic resonance imaging for left ventricular diastolic assessment in aortic regurgitation: a case report. J Med Case Reports. 2022;16(1):205.
Robinson S, Rana B, Oxborough D, Steeds R, Monaghan M, Stout M, Pearce K, Harkness A, Ring L, Paton M, Akhtar W, Bedair R, Battacharyya S, Collins K, Oxley C, Sandoval J, Schofield MBChBR, Siva A, Parker K, Willis J, Augustine DX. A practical guideline for performing a comprehensive transthoracic echocardiogram in adults: the British Society of Echocardiography minimum dataset. Echo Res Pract. 2020;7(4):G59-93.
Fidock B, Archer G, Barker N, Elhawaz A, Al-Mohammad A, Rothman A, Hose R, Hall IR, Grech E, Briffa N, Lewis N, van der Geest RJ, Zhang JM, Zhong L, Swift AJ, Wild JM, Gárate ED, Bucciarelli-Ducci C, Bax JJ, Plein S, Myerson S, Garg P. Standard and emerging CMR methods for mitral regurgitation quantification. Int J Cardiol. 2021;15(331):316–21.
Assadi H, Uthayachandran B, Li R, Wardley J, Nyi TH, Grafton-Clarke C, Swift AJ, Solana AB, Aben JP, Thampi K, Hewson D, Sawh C, Greenwood R, Hughes M, Kasmai B, Zhong L, Flather M, Vassiliou VS, Garg P. Kat-ARC accelerated 4D flow CMR: clinical validation for transvalvular flow and peak velocity assessment. Eur Radiol Exp. 2022;6(1):46.
van der Geest RJ, Reiber JHC. Quantification in cardiac MRI. J Magn Reson Imaging. 1999;10(5):602–8.
Assadi H, Jones R, Swift AJ, Al-Mohammad A, Garg P. Cardiac MRI for the prognostication of heart failure with preserved ejection fraction: A systematic review and meta-analysis. Magn Reson Imaging. 2021;1(76):116–22.
Tribouilloy C, Rusinaru D, Mahjoub H, Soulière V, Lévy F, Peltier M, Slama M, Massy Z. Prognosis of heart failure with preserved ejection fraction: a 5 year prospective population-based study. Eur Heart J. 2008;29(3):339–47.
Garg P, Assadi H, Jones R, Chan WB, Metherall P, Thomas R, van der Geest R, Swift AJ, Al-Mohammad A. Left ventricular fibrosis and hypertrophy are associated with mortality in heart failure with preserved ejection fraction. Sci Rep. 2021;11(1):617.
Nikitin NP, Witte KKA, Thackray SDR, de Silva R, Clark AL, Cleland JGF. Longitudinal ventricular function: normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color doppler tissue imaging. J Am Soc Echocardiogr. 2003;16(9):906–21.
Fyrenius A, Wigström L, Bolger AF, Ebbers T, Öhman KP, Karlsson M, Wranne B, Engvall J. Pitfalls in doppler evaluation of diastolic function: insights from 3-dimensional magnetic resonance imaging. J Am Soc Echocardiogr. 1999;12(10):817–26.
Tsampasian V, Elghazaly H, Chattopadhyay R, Ali O, Corballis N, Chousou PA, Clark A, Garg P, Vassiliou VS. Sodium glucose co-transporter 2 inhibitors in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Prev Cardiol. 2022;29(6):e227–9.
Leong DP, De Pasquale CG, Selvanayagam JB. Heart failure with normal ejection fraction: the complementary roles of echocardiography and CMR imaging. JACC Cardiovasc Imaging. 2010;3(4):409–20.
Webb J, Fovargue L, Tøndel K, Porter B, Sieniewicz B, Gould J, Rinaldi CA, Ismail T, Chiribiri A, Carr-White G. The emerging role of cardiac magnetic resonance imaging in the evaluation of patients with HFpEF. Curr Heart Fail Rep. 2018;15(1):1–9.
Kamphuis VP, Roest AAW, Ajmone Marsan N, van den Boogaard PJ, Kroft LJM, Aben JP, Bax JJ, de Roos A, Lamb HJ, Westenberg JJM. Automated cardiac valve tracking for flow quantification with four-dimensional flow MRI. Radiology. 2019;290(1):70–8.
Assadi H, Alabed S, Maiter A, Salehi M, Li R, Ripley DP, Van der Geest RJ, Zhong Y, Zhong L, Swift AJ, Garg P. The role of artificial intelligence in predicting outcomes by cardiovascular magnetic resonance: a comprehensive systematic review. Medicina (Mex). 2022;58(8):1087.
Gorecka M, Bissell MM, Higgins DM, Garg P, Plein S, Greenwood JP. Rationale and clinical applications of 4D flow cardiovascular magnetic resonance in assessment of valvular heart disease: a comprehensive review. J Cardiovasc Magn Reson. 2022;24(1):49.
Buss SJ, Krautz B, Schnackenburg B, Abdel-Aty H, Santos MFB, Andre F, Maertens MJ, Mereles D, Korosoglou G, Giannitsis E, Katus HA, Steen H. Classification of diastolic function with phase-contrast cardiac magnetic resonance imaging: validation with echocardiography and age-related reference values. Clin Res Cardiol. 2014;103(6):441–50.
Thavendiranathan P, Guetter C, da Silveira JS, Lu X, Scandling D, Xue H, Jolly MP, Raman SV, Simonetti OP. Mitral annular velocity measurement with cardiac magnetic resonance imaging using a novel annular tracking algorithm: validation against echocardiography. Magn Reson Imaging. 2019;1(55):72–80.
Bollache E, Redheuil A, Clément-Guinaudeau S, Defrance C, Perdrix L, Ladouceur M, Lefort M, De Cesare A, Herment A, Diebold B, Mousseaux E, Kachenoura N. Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography. J Cardiovasc Magn Reson. 2010;12(1):63.
Njoku P, Grafton-Clarke C, Assadi H, Gosling R, Archer G, Swift AJ, Morris P, Albaraikan A, Williams G, Westenberg J, Aben JP, Ledoux L, Alabed S, Flather M, Cameron D, Cabrero JB, Val JRD, Nair S, Ryding A, Sawh C, Swoboda PP, Levelt E, Chowdhary A, Vassiliou V, Zhong L, Garg P. Validation of time-resolved, automated peak trans-mitral velocity tracking: Two center four-dimensional flow cardiovascular magnetic resonance study. Int J Cardiol. 2022 Jun 15;0(0).
Okamoto C, Okada A, Kanzaki H, Nishimura K, Hamatani Y, Amano M, Takahama H, Amaki M, Hasegawa T, Fujita T, Kobayashi J, Yasuda S, Izumi C. Prognostic impact of peak mitral inflow velocity in asymptomatic degenerative mitral regurgitation. Heart. 2019;105(8):609–15.