A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers

Karen S Aitken1, Meredith D McNeil1, Scott Hermann2, Peter C Bundock3, Andrzej Kilian4, Katarzyna Heller-Uszynska4, Robert J Henry5, Jingchuan Li1
1CSIRO Plant Industry, Queensland Bioscience Precinct, St. Lucia, Australia
2BSES Limited, Indooroopilly, Australia
3Southern Cross Plant Science, Southern Cross University, Lismore, Australia
4Diversity Arrays Technology Pty Ltd, Yarralumla, Australia
5Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia

Tóm tắt

Sugarcane genetic mapping has lagged behind other crops due to its complex autopolyploid genome structure. Modern sugarcane cultivars have from 110-120 chromosomes and are in general interspecific hybrids between two species with different basic chromosome numbers: Saccharum officinarum (2n = 80) with a basic chromosome number of 10 and S. spontaneum (2n = 40-128) with a basic chromosome number of 8. The first maps that were constructed utilised the single dose (SD) markers generated using RFLP, more recent maps generated using AFLP and SSRs provided at most 60% genome coverage. Diversity Array Technology (DArT) markers are high throughput allowing greater numbers of markers to be generated. Progeny from a cross between a sugarcane variety Q165 and a S. officinarum accession IJ76-514 were used to generate 2467 SD markers. A genetic map of Q165 was generated containing 2267 markers, These markers formed 160 linkage groups (LGs) of which 147 could be placed using allelic information into the eight basic homology groups (HGs) of sugarcane. The HGs contained from 13 to 23 LGs and from 204 to 475 markers with a total map length of 9774.4 cM and an average density of one marker every 4.3 cM. Each homology group contained on average 280 markers of which 43% were DArT markers 31% AFLP, 16% SSRs and 6% SNP markers. The multi-allelic SSR and SNP markers were used to place the LGs into HGs. The DArT array has allowed us to generate and map a larger number of markers than ever before and consequently to map a larger portion of the sugarcane genome. This larger number of markers has enabled 92% of the LGs to be placed into the 8 HGs that represent the basic chromosome number of the ancestral species, S. spontaneum. There were two HGs (HG2 and 8) that contained larger numbers of LGs verifying the alignment of two sets of S. officinarum chromosomes with one set of S. spontaneum chromosomes and explaining the difference in basic chromosome number between the two ancestral species. There was also evidence of more complex structural differences between the two ancestral species.

Từ khóa


Tài liệu tham khảo

Carruthers SP: Solid biofuels: fuel crops. Crops for Industry and Energy 1994 CAS Report 15:168-180. Edited by: Carruthers SP, Miller PA, Vaughan CMA. 1994, Centre for Agricultural Strategy, University of Reading UK

Matsuoka S, Ferro J, Arruda P: The Brazilian experience of sugarcane ethanol industry. Biofuels – Global Impact on Renewable Energy, Production Agriculture and Technological Advancements. Edited by: Tomes D, Lakshmanan P, Songstad D. 2011, New York, Dordrecht, Heidelburg, London: Springer, 157-172.

D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC: Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome. 1998, 41: 221-225. 10.1139/gen-41-2-221.

D’Hont A, Grivet L, Feldmann P, Rao PS, Berding N, Glauszmann JC: Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet. 1996, 250: 404-413.

Piperidis G, Piperidis N, D’Hont A: Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Gen Genet. 2010, 284: 65-73. 10.1007/s00438-010-0546-3.

Le Cunff L, Garsmeur O, Raboin LM, Pauquet J, Telismart H, Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann JC, D’Hont A: Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking towards a rust resistance gene (BruI) in highly polyploid sugarcane (2n 12x 115). Genetics. 2008, 180: 649-660. 10.1534/genetics.108.091355.

Wu KK, Burnquist W, Sorrels ME, Tew TL, Moore PH, Tanksley SD: The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet. 1992, 83: 294-300.

Grattapaglia D, Sederoff R: Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using pseudo-testcross: mapping strategy and RAPD markers. Genetics. 1994, 137: 1121-1137.

Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BWS: A genetic linkage map of Saccharum spontaneum L. ‘SES208’. Genetics. 1993, 134: 1249-1260.

Da Silva J, Honeycutt RJ, Burnquist W, Al—Janabi SM, Sorrells ME, Tanksley SD, Sobral BWS: Saccharum spontaneum L. ‘SES208’ genetic linkage map combining RFLP- and PCR-based markers. Mol Breed. 1995, 1: 165-179. 10.1007/BF01249701.

Ming R, Liu S-C, Lin Y-R, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH: Detailed alignment of Saccharum and Sorghum Chromosomes: Comparative organisation of closely related diploid and polyploidy genomes. Genetics. 1998, 150: 1663-1682.

Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ: A RAPD genetic map of Saccharum officinarum. Crop Sci. 1996, 36: 1362-1366. 10.2135/cropsci1996.0011183X003600050046x.

Aitken KS, Jackson PA, McIntyre CL: Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome. 2007, 50: 742-756. 10.1139/G07-056.

Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L: Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). 1. Genome mapping with AFLP markers. Theor Appl Genet. 2001, 103: 84-97. 10.1007/s001220000390.

Aitken KS, Jackson PA, McIntyre CL: A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet. 2005, 110: 789-801. 10.1007/s00122-004-1813-7.

Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys MA, D’Hont A: Genomic distribution and characterisation of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Gen Genomics. 2003, 269: 406-419. 10.1007/s00438-003-0849-8.

Raboin LM, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau JY, D’Hont A: Genetic mapping in sugarcane, a high polyploidy, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet. 2006, 113: 1382-1391.

Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM, Figueira AV, Ulian EC, Garcia AAF, Souza AP: Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed. 2007, 20: 189-208. 10.1007/s11032-007-9082-1.

Andru S, Pan YB, Thongthawee S, Burner DM, Kimbeng CA: Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. 1. Linkage mapping using AFLP, SSR and TRAP markers. Theor Appl Genet. 2011, 123: 77-93. 10.1007/s00122-011-1568-x.

Palhares AC, Rodrigues-Morais TB, Van Sluys MA, Domingues DS, Maccheroni W, Jordão H, Souza AP, Marconi TG, Mollinari M, Gazaffi R, Garcia AAF, Carneiro Vieira ML: A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genet. 2012, 13: 51-

Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A: Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci U S A. 2004, 101: 9915-9920. 10.1073/pnas.0401076101.

Heller-Uszynska K, Uszynski G, Huttner E, Evers M, Carlig J, Caig V, Aitken K, Jackson P, Piperidis G, Cox M, Gilmour R, D’Hont A, Buterfield M, Glaszmann JC, Kilian A: Diversity arrays technology effectively reveals DNA polymorphism in a large and complex genome of sugarcane. Mol Breed. 2010, 28: 37-55.

Baker P, Jackson PA, Aitken K: Bayesian estimation of marker dosage in sugarcane and other autopolyploids. Theor Appl Genet. 2010, 120: 1653-1672. 10.1007/s00122-010-1283-z.

Gower JC: A general coefficient of similarity and some of its properties. Biometrics. 1971, 27: 857-874. 10.2307/2528823.

Mace ES, Rami J-F, Bouchet S, Klein PE, Klein RR, Kilian A, Wendzl P, Xia L, Halloran K, Jordan D: A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol. 2009, 9: 1-14. 10.1186/1471-2229-9-1.

Mace ES, Xia L, Jordan DR, Halloran K, Parth DK, Huttner E, Wenzl P, Kilian A: DArT markers: diversity analyses and mapping in Sorghum bicolour. BMC Genomics. 2008, 9: 26-37. 10.1186/1471-2164-9-26.

Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjørnstad , Howarth CJ, Jannink J-L, Anderson JM, Rossnagel BG, Stuthman DD, Sorrells ME, Jackson EW, Tuvesson S, Kolb FL, Olssom O, Federizzi LC, Carson ML, Ohm HW, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceeplitis A, Langdon T: New DArT markers for oat provide enhanced map coverage and global germplasm characterisation. BMC Genomics. 2009, 10: 39-61. 10.1186/1471-2164-10-39.

Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin Y, Liu S, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang Y, Kresovich S, Schertz KF, Paterson AH: A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics. 2003, 165: 367-386.

Kim J-S, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, Mullet JE: Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin. Genes and recombination in comparison to rice. Genetics. 2005, 171: 1963-1976. 10.1534/genetics.105.048215.

Bhat SR, Gill SS: The implications of 2n egg gametes in mobilization and breeding of sugarcane. Euphytica. 1985, 34: 377-384. 10.1007/BF00022932.

Devos KM, Dubcovsky J, Dvořák J, Chinoy CN, Gale MD: Structural evolution of wheat chromosomes 4A, 5A and 7B and its impact on recombination. Theor Appl Genet. 1995, 91: 282-288. 10.1007/BF00220890.

Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai K, Campbell E, Kubaláková M, Šimková H, Batley J, Doležel , Hernandez P, Edwards D: Sequencing wheat chromsomes arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conversion. Theor Appl Genet. 2012, 124: 423-432. 10.1007/s00122-011-1717-2.

Wu YQ, Huang Y: An SSR genetic map of Sorghum bicolour (l.) Moench and its comparison to a published genetic map. Genome. 2007, 50: 84-89. 10.1139/g06-133.

Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glasmann JC: RFLP mapping in a highly polyploidy and aneuploid interspecific hybrid. Genetics. 1996, 142: 987-1000.

Bhattramakki D, Dong J, Chhabra AK, Hart GE: An integrated SSR and RFLP linkage map of Sorghum bicolour (L.) Moench. Genome. 2000, 43: 988-1002. 10.1139/gen-43-6-988.

Kong L, Dong J, Hart GE: Characteristics, linkage map positions and alleleic differentiation of Sorghum bicolour (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet. 2000, 101: 438-448. 10.1007/s001220051501.

Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ: Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploidy plant species using 454 sequencing. Plant Biotechnol J. 2009, 7: 347-354. 10.1111/j.1467-7652.2009.00401.x.

Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD: RFLP-based genetic maps of wheat homologous group-7 chromosomes. Theor Appl Genet. 1989, 78: 495-504. 10.1007/BF00290833.

Tao YZ, Jordan DR, McIntyre CL, Henzell RG: Construction of a genetic map in a sorghum recombinant inbred line using probes from different sources and its comparison with other sorghum maps. Australian J Agric Res. 1998, 49: 729-736. 10.1071/A97112.

Van Ooijen JW: JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. 2004, Wageningen, Netherlands: Kyazma B.V

Qu L, Hancock JF: Detecting and mapping repulsion –phase linkage in polyploids with polysomic inheritance. Theor Appl Genet. 2001, 103: 136-143. 10.1007/s001220100647.