Human papillomavirus vaccine introduction in low-income and middle-income countries: guidance on the use of cost-effectiveness models
Tóm tắt
The World Health Organization (WHO) recommends that the cost effectiveness of introducing human papillomavirus (HPV) vaccination is considered before such a strategy is implemented. However, developing countries often lack the technical capacity to perform and interpret results of economic appraisals of vaccines. To provide information about the feasibility of using such models in a developing country setting, we evaluated models of HPV vaccination in terms of their capacity, requirements, limitations and comparability. A literature review identified six HPV vaccination models suitable for low-income and middle-income country use and representative of the literature in terms of provenance and model structure. Each model was adapted by its developers using standardised data sets representative of two hypothetical developing countries (a low-income country with no screening and a middle-income country with limited screening). Model predictions before and after vaccination of adolescent girls were compared in terms of HPV prevalence and cervical cancer incidence, as was the incremental cost-effectiveness ratio of vaccination under different scenarios. None of the models perfectly reproduced the standardised data set provided to the model developers. However, they agreed that large decreases in type 16/18 HPV prevalence and cervical cancer incidence are likely to occur following vaccination. Apart from the Thai model (in which vaccine and non-vaccine HPV types were combined), vaccine-type HPV prevalence dropped by 75% to 100%, and vaccine-type cervical cancer incidence dropped by 80% to 100% across the models (averaging over age groups). The most influential factors affecting cost effectiveness were the discount rate, duration of vaccine protection, vaccine price and HPV prevalence. Demographic change, access to treatment and data resolution were found to be key issues to consider for models in developing countries. The results indicated the usefulness of considering results from several models and sets of modelling assumptions in decision making. Modelling groups were prepared to share their models and expertise to work with stakeholders in developing countries. Please see related article:
http://www.biomedcentral.com/1741-7007/9/55
Tài liệu tham khảo
International Agency for Research on Cancer: World Cancer Report, 2008. 2008, Lyon: IARC Press
FUTURE II Study Group: Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007, 356: 1915-1927.
Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR, et al: Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009, 374: 301-314. 10.1016/S0140-6736(09)61248-4.
Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ: Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003, 348: 518-527. 10.1056/NEJMoa021641.
Adams M, Jasani B, Fiander A: Prophylactic HPV vaccination for women over 18 years of age. Vaccine. 2009, 27: 3391-3394. 10.1016/j.vaccine.2009.01.067.
World Health Organization: Vaccine Introduction Guidelines. Adding a Vaccine to a National Immunization Programme: Decision and Implementation. 2005, Geneva: World Health Organization
World Health Organization: Human papillomavirus vaccines. WHO position paper. Wkly Epidemiol Rec. 2009, 84: 118-131.
Beutels P, Jit M: A brief history of economic evaluation for human papillomavirus vaccination policy. Sex Health. 2010, 7: 352-358. 10.1071/SH10018.
Markowitz LE, Dunne EF, Saraiya M, Lawson HW, Chesson H, Unger ER: Quadrivalent Human Papillomavirus Vaccine: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2007, 56: 1-24.
Goldie SJ, Kim JJ, Kobus K, Goldhaber-Fiebert JD, Salomon J, O'shea MK, Xavier BF, de Sanjose S, Franco EL: Cost-effectiveness of HPV 16, 18 vaccination in Brazil. Vaccine. 2007, 25: 6257-6270. 10.1016/j.vaccine.2007.05.058.
Kim JJ, Andres-Beck B, Goldie SJ: The value of including boys in an HPV vaccination programme: a cost-effectiveness analysis in a low-resource setting. Br J Cancer. 2007, 97: 1322-1328. 10.1038/sj.bjc.6604023.
Sinanovic E, Moodley J, Barone MA, Mall S, Cleary S, Harries J: The potential cost-effectiveness of adding a human papillomavirus vaccine to the cervical cancer screening programme in South Africa. Vaccine. 2009, 27: 6196-6202. 10.1016/j.vaccine.2009.08.004.
Ginsberg GM, Edejer TT, Lauer JA, Sepulveda C: Screening, prevention and treatment of cervical cancer -- a global and regional generalized cost-effectiveness analysis. Vaccine. 2009, 27: 6060-6079. 10.1016/j.vaccine.2009.07.026.
Goldie SJ, O'Shea M, Campos NG, Diaz M, Sweet S, Kim SY: Health and economic outcomes of HPV 16,18 vaccination in 72 GAVI-eligible countries. Vaccine. 2008, 26: 4080-4093. 10.1016/j.vaccine.2008.04.053.
Andrus JK, Toscano CM, Lewis M, Oliveira L, Ropero AM, Davila M, Fitzsimmons JW: A model for enhancing evidence-based capacity to make informed policy decisions on the introduction of new vaccines in the Americas: PAHO's ProVac initiative. Public Health Rep. 2007, 122: 811-816.
Dasbach EJ, Elbasha EH, Insinga RP: Mathematical models for predicting the epidemiologic and economic impact of vaccination against human papillomavirus infection and disease. Epidemiol Rev. 2006, 28: 88-100. 10.1093/epirev/mxj006.
Insinga RP, Dasbach EJ, Elbasha EH: Structural differences among cost-effectiveness models of human papillomavirus vaccines. Expert Rev Vaccines. 2008, 7: 895-913. 10.1586/14760584.7.7.895.
Marra F, Cloutier K, Oteng B, Marra C, Ogilvie G: Effectiveness and cost effectiveness of human papillomavirus vaccine: a systematic review. Pharmacoeconomics. 2009, 27: 127-147. 10.2165/00019053-200927020-00004.
Puig-Junoy J, Lopez-Valcarcel BG: Economic evaluations of massive HPV vaccination: within-study and between study variations in incremental cost per QALY gained. Prev Med. 2009, 48: 444-448. 10.1016/j.ypmed.2009.02.011.
Techakehakij W, Feldman RD: Cost-effectiveness of HPV vaccination compared with Pap smear screening on a national scale: a literature review. Vaccine. 2008, 26: 6258-6265. 10.1016/j.vaccine.2008.09.036.
Brisson M, Van d V, Boily MC: Economic evaluation of human papillomavirus vaccination in developed countries. Public Health Genomics. 2009, 12: 343-351. 10.1159/000214924.
Kim JJ, Brisson M, Edmunds WJ, Goldie SJ: Modeling cervical cancer prevention in developed countries. Vaccine. 2008, 26 (Suppl 10): K76-K86.
Ferko N, Postma M, Gallivan S, Kruzikas D, Drummond M: Evolution of the health economics of cervical cancer vaccination. Vaccine. 2008, 26 (Suppl 5): F3-15.
Newall AT, Beutels P, Wood JG, Edmunds WJ, MacIntyre CR: Cost-effectiveness analyses of human papillomavirus vaccination. Lancet Infect Dis. 2007, 7: 289-296. 10.1016/S1473-3099(07)70083-X.
Tangcharoensathien V, Limwattananon S, Chaugwon R, Praditsittikorn N, Teerawattananon Y, Tantavess S: Research for Development of an Optimal Policy Strategy for Prevention and Control of Cervical Cancer in Thailand. Research report submitted to the World Bank. 2008, Nonthaburi, Thailand: International Health Policy Program, Thailand (IHPP) and Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health
Praditsitthikorn N, Teerawattananon Y, Tantivess S, Limwattananon S, Riewpaiboon A, Chichareon S, Ieumwananonthachai N, Tangcharoensathien V: Economic evaluation of policy options for prevention and control of cervical cancer in Thailand. Pharmacoeconomics (in press). 2011
Elbasha EH, Dasbach EJ, Insinga RP: Model for Assessing Human Papillomavirus Vaccination Strategies. Emerg Infect Dis. 2007, 13: 28-41. 10.3201/eid1301.060438.
Anonychuk AM, Bauch CT, Merid MF, Van Kriekinge G, Demarteau N: A cost-utility analysis of cervical cancer vaccination in preadolescent Canadian females. BMC Public Health. 2009, 9: 401-10.1186/1471-2458-9-401.
WHO/ICO Information Centre on Human Papilloma Virus (HPV) and Cervical Cancer. [http://www.who.int/hpvcentre/en/]
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1741-7015/9/54/prepub