Pollen and spore monitoring in the world
Tóm tắt
Ambient air quality monitoring is a governmental duty that is widely carried out in order to detect non-biological (“chemical”) components in ambient air, such as particles of < 10 µm (PM10, PM2.5), ozone, sulphur dioxide, and nitrogen oxides. These monitoring networks are publicly funded and air quality data are open to the public. The situation for biological particles that have detrimental effects on health, as is the case of pollen and fungal spores, is however very different. Most pollen and spore monitoring networks are not publicly funded and data are not freely available. The information regarding which biological particle is being monitored, where and by whom, is consequently often not known, even by aerobiologists themselves. This is a considerable problem, as local pollen data are an important tool for the prevention of allergic symptoms. The aim of this study was to review pollen monitoring stations throughout the world and to create an interactive visualization of their distribution. The method employed to collect information was based on: (a) a review of the recent and historical bibliography related to pollen and fungal spore monitoring, and (b) personal surveys of the managers of national and regional monitoring networks. The interactive application was developed using the R programming language. We have created an inventory of the active pollen and spore monitoring stations in the world. There are at least 879 active pollen monitoring stations in the world, most of which are in Europe (> 500). The prevalent monitoring method is based on the Hirst principle (> 600 stations). The inventory is visualised as an interactive and on-line map. It can be searched, its appearance can be adjusted to the users’ needs and it is updated regularly, as new stations or changes to those that already exist can be submitted online. The map shows the current situation of pollen and spore monitoring and facilitates collaboration among those individuals who are interested in pollen and spore counts. It might also help to improve the monitoring of biological particles up to the current level employed for non-biological components.
Tài liệu tham khảo
Durham SR, Nelson HS, Nolte H, Bernstein DI, Creticos PS, Li Z, et al. Magnitude of efficacy measurements in grass allergy immunotherapy trials is highly dependent on pollen exposure. Allergy. 2014;69(5):617–23.
Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701–9.
Eduard W. Fungal spores: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol. 2009;39(10):799–864.
Shin SH, Ye MK, Choi SY, Kim YH. Effect of eosinophils activated with Alternaria on the production of extracellular matrix from nasal fibroblasts. Ann Allergy Asthma Immunol. 2016;116(6):559–64.
Sofiev M, Bergmann K. Allergenic pollen: a review of the production, release, distribution and health impacts. Heidelberg: Springer; 2013.
Burbach GJ, Heinzerling LM, Edenharter G, Bachert C, Bindslev-Jensen C, Bonini S, et al. GA(2)LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy. 2009;64(10):1507–15.
Haftenberger M, Laussmann D, Ellert U, Kalcklosch M, Langen U, Schlaud M, et al. Prevalence of sensitisation to aeraoallergens and food allergens: results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2013;56(5–6):687–97.
Blackley C. Experimental researches on the cause and nature of Catarrhus Aestivus (hay fever, hay asthma). London: Balliere, Tindall & Cox; 1873.
Hyde HA. Volumetric counts of pollen grains at Cardiff, 1954–1957. J Allergy. 1959;30(3):219–34.
Hyde H, Williams D. Studies in atmospheric pollen. II: diurnal variation in the incidence of grass pollen. New Phytol. 1945;44:83–94.
Hyde H. Studies in atmospheric pollen. IV. Pollen deposition in Great Britain, 1943. Part II. The composition of the pollen catch. New Phytol. 1950;49(3):407–20.
Hirst JM. An automatic volumetric spore trap. Ann Appl Biol. 1952;39(2):257–65.
IPCC. Climate change: working group I: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, et al., editors. http://www.ipcc.ch/index.htm#.UK-1xaU7GRg. Cambridge University Press; 2007.
Pohl F. Die Pollenkorngewichte einziger Pflanzen und ihre Ökologische Bedeutung. Beiträge zur Morphologie. Botanische Zentralblatt (Phyt). 1937;57:112–72.
Brown HM, Irving KR. The size and weight of common allergenic pollens: an investigation of their number per microgram and size distribution. Acta Allergol. 1973;28(2):132–7.
Winkler H, Ostrowski R, Wilhelm M. Pollenbestimmungsbuch der Stiftung Deutscher Polleninformationsdienst. Paderborn: Takt Verlag; 2001.
Trigo M.M., Jato V., Fernández D., C.G. Atlas Aeropalinológico de España; 2008.
Morris G, Kokki M, Anderson K, Richardson M. Sampling of Aspergillus spores in air. J Hosp Infect. 2000;44(2):81–92.
Pöttering H, Lenarcic J. Directive 2008/50/EC of the european parliament and of the council. OJ 2008;11-6-20098(L):152/155.
Buters JTM, Thibaudon M, Smith M, Kennedy R, Rantio-Lehtimaaki A, Albertini R, et al. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmos Environ. 2012;55:496–505.
Buters J, Prank M, Sofiev M, Pusch G, Albertini R, Annesi-Maesano I, et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographical location and time in season. J Allergy Clin Immunol. 2015;136(1):87–95.
Beggs PJ. Allergen aerosol from pollen-nucleated precipitation: A novel thunderstorm asthma trigger. Atmos Environ. 2017;152:455–7.
Chambers J. Programming in R; 2008.
Buters JTM. Pollen allergens and geographical factors. In: Akdis C, Agache I, editors. Global atlas of allergy, chapter 31. Zurich: European Academy of Allergy and Clinical Immunology; 2014. p. 36–8.
Kawashima S, Thibaudon M, Matsuda S, Fujita T, Lemonis N, Clot B, et al. Automated pollen monitoring system using laser optics for observing seasonal changes in the concentration of total airborne pollen. Aerobiologia. 2017; 1–12.
Kawashima S, Clot B, Fujita T, Takahashi Y, Nakamura K. An algorithm and a device for counting airborne pollen automatically using laser optics. Atmos Environ. 2007;41(36):7987–93.
Crouzy B, Stella M, Konzelmann T, Calpini B, Clot B. All-optical automatic pollen identification: towards an operational system. Atmos Environ. 2016;140:202–12.
Oteros J, Pusch G, Weichenmeier I, Heimann U, Moller R, Roseler S, et al. Automatic and online pollen monitoring. Int Arch Allergy Immunol. 2015;167(3):158–66.