Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty

Water Resources Research - Tập 19 Số 5 - Trang 1151-1162 - 1983
George Kuczera

Tóm tắt

A Bayesian methodology is developed to evaluate parameter uncertainty in catchment models fitted to a hydrologic response such as runoff, the goal being to improve the chance of successful regionalization. The catchment model is posed as a nonlinear regression model with stochastic errors possibly being both autocorrelated and heteroscedastic. The end result of this methodology, which may use Box‐Cox power transformations and ARMA error models, is the posterior distribution, which summarizes what is known about the catchment model parameters. This can be simplified to a multivariate normal provided a linearization in parameter space is acceptable; means of checking and improving this assumption are discussed. The posterior standard deviations give a direct measure of parameter uncertainty, and study of the posterior correlation matrix can indicate what kinds of data are required to improve the precision of poorly determined parameters. Finally, a case study involving a nine‐parameter catchment model fitted to monthly runoff and soil moisture data is presented. It is shown that use of ordinary least squares when its underlying error assumptions are violated gives an erroneous description of parameter uncertainty.

Từ khóa


Tài liệu tham khảo

10.1016/0022-1694(73)90035-8

Anderson T. W., 1958, An Introduction to Multivariate Statistical Analysis

Bard Y., 1974, Nonlinear Parameter Estimation

Beale E. M. L., 1960, Confidence regions in non‐linear estimation, J. R. Stat. Soc. Ser. B, 22, 41

Box G. E. P., 1964, The analysis of transformations, J. R. Stat. Soc. Ser. B, 26, 211

Box G. E. P., 1976, Time Series Analysis: Forecasting and Control

Box G. E. P., 1973, Bayesian Inference in Statistical Analysis

Carroll R. J., 1980, A robust method for testing transformations to achieve approximate normality, J. R. Stat. Soc. Ser. B, 42, 71

Chapman T. G., 1970, I.A.S.H.‐UNESCO Symposium on the Results of Research on Representative and Experimental Basins, Wellington, New Zealand, IASH‐AISH Publ., 126

Chapman T. G., 1975, Prediction in Catchment Hydrology, 459

10.1016/0022-1694(73)90089-9

10.1016/0022-1694(76)90013-5

Draper N. R., 1966, Applied Regression Analysis

Duncan H. P. Daily modelling of forest throughfall M.S. thesis Monash Univ. Victoria 1980.

Guttman I., 1965, On Beale's measures of non‐linearity, Technometrics, 7, 623, 10.1080/00401706.1965.10490303

Ibbitt R. P., 1974, Mathematical Models in Hydrology Symposium, IAHS‐AISH Publ., 461

10.1029/WR012i003p00477

Kuczera G. Improved inference of catchment model parametersRep. 1/1982Dep. of Civ. Eng. Monash Univ. Clayton Victoria 1982a.

10.1029/WR018i001p00146

Kuczera G., Improved parameter inference in catchment models, 2, Combining different kinds of hydrologic data and testing their compatibility, Water Resour. Res., 10.1029/WR019i005p01163

Langford K. J. P. J.O'Shaughnessy A study of canopy interception in native forests and conifer plantationsRep. MMBW‐W‐0007Melbourne and Metrop. Board of Works Melbourne Victoria 1977.

Second progress report—CoranderrkK. J.Langford P. J.O'Shaughnessy Rep. MMBW‐W‐0010Melbourne and Metrop. Board of Works Melbourne Victoria 1980.

Langford K. J. H. P.Duncan D. P.Heeps Forecasting stream‐flow and storage using a soil dryness index modelRep. MMBW‐W‐0031Melbourne and Metrop. Board of Works Melbourne Victoria 1978.

10.1029/WR012i003p00472

10.1137/0111030

10.1029/WR014i002p00299

Mein R. G. T. A.McMahon Review of the role of process modelling in the Australian representative basins program Review of the Australian Representative Basin ProgramRep. Basin Set. Rep. 4Dep. of Nat. Develop. and Energy Canberra 1982.

Mendenhall W., 1973, Mathematical Statistics with Applications

10.1029/WR017i005p01367

10.1029/WR016i002p00430

10.1080/02626667609491617

10.1029/WR018i004p00947