Improving Liquid Chromatography-Mass Spectrometry Sensitivity Using a Subambient Pressure Ionization with Nanoelectrospray (SPIN) Interface

American Chemical Society (ACS) - Tập 22 - Trang 1318-1325 - 2011
Keqi Tang1, Jason S. Page1, Ioan Marginean1, Ryan T. Kelly1, Richard D. Smith1
1Biological Sciences Division, Pacific Northwest National Laboratory, Richland, USA

Tóm tắt

In this work, the subambient pressure ionization with nanoelectrospray (SPIN) ion source and interface, which operates at ~15–30 Torr, is demonstrated to be compatible with gradient reversed-phase liquid chromatography-MS applications, exemplified here with the analysis of complex samples (a protein tryptic digest and a whole cell lysate). A low liquid chromatographic flow rate (100–400 nL/min) allowed stable electrospray to be established while avoiding electrical breakdown. Efforts to increase the operating pressure of the SPIN source relative to previously reported designs prevented solvent freezing and enhanced charged cluster/droplet desolvation. A 5- to 12-fold improvement in sensitivity relative to a conventional atmospheric pressure nanoelectrospray ionization (ESI) source was obtained for detected peptides.

Tài liệu tham khảo

Yamashita, M., Fenn, J.B.: Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88, 4451–4459 (1984) Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization-principles and practice. Mass Spectrom. Rev. 9, 37–70 (1990) Qian, W.J., Jacobs, J.M., Liu, T., Camp, D.G., Smith, R.D.: Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol. Cell. Proteom. 5, 1727–1744 (2006) Swanson, S.K., Washburn, M.P.: The continuing evolution of shotgun proteomics. Drug Discov. Today 10, 719–725 (2005) Shen, Y.F., Smith, R.D.: Advanced nanoscale separations and mass spectrometry for sensitive high-throughput proteomics. Exp. Rev. Proteom. 2, 431–447 (2005) Kebarle, P., Tang, L.: From ions in solution to ions in the gas phase—The mechanism of electrospray mass spectrometry. Anal. Chem. 65, A972–A986 (1993) Schneider, B.B., Javaheri, H., Covey, T.R.: Ion sampling effects under conditions of total solvent consumption. Rapid Commun. Mass Spectrom. 20, 1538–1544 (2006) Cole, R.B.: Some tenets pertaining to electrospray ionization mass spectrometry. J. Mass Spectrom. 35, 763–772 (2000) Page, J.S., Kelly, R.T., Tang, K., Smith, R.D.: Ionization and transmission efficiency in an electrospray ionization-mass spectrometry interface. J. Am. Soc. Mass Spectrom. 18, 1582–1590 (2007) Wilm, M.S., Mann, M.: Electrospray and taylor-cone theory, Dole's beam of macromolecules at last? Int. J. Mass Spectrom. Ion Processes 136, 167–180 (1994) Wilm, M., Mann, M.: Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8 (1996) Valaskovic, G.A., Kelleher, N.L., McLafferty, F.W.: Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science 273, 1199–1202 (1996) Smith, R.D., Shen, Y., Tang, K.: Ultrasensitive and quantitative analyses from combined separations-mass spectrometry for the characterization of proteomes. Acc. Chem. Res. 37, 269–278 (2004) El-Faramawy, A., Siu, K.W.M., Thomson, B.A.: Efficiency of nano-electrospray ionization. J. Am. Soc. Mass Spectrom. 16, 1702–1707 (2005) Smith, R.D., Loo, J.A., Edmonds, C.G., Barinaga, C.J., Udseth, H.R.: New developments in biochemical mass spectrometry: electrospray ionization. Anal. Chem. 62, 882–899 (1990) Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387 (2001) Page, J.S., Tang, K., Kelly, R.T., Smith, R.D.: Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Anal. Chem. 80, 1800–1805 (2008) Hogan, J.J., Carson, R.S., Schneider, J.M., Hendricks, C.D.: Factors influencing electrically sprayed liquids. AIAA J. 2, 1460–1461 (1964) Cook, K.D.: Electrohydrodynamic mass-spectrometry. Mass Spectrom. Rev. 5, 467–519 (1986) Prewett, P.D., Mair, G.L.R.: Focused Ion Beams from LMIS. Research Study Press, Somerset (1991) Gamero-Castano, M., Aguirre-de-Carcer, I., de Juan, L., e la Mora, J.F.: On the current emitted by Taylor Cone-Jets of electrolytes in Vacuo—implications for liquid metal ion sources. J. Appl. Phys. 83, 2428–2434 (1998) Romero-Sanz, I., de la Mora, J.F.: Energy distribution and spatial structure of electrosprays of ionic liquids in vacuo. J. Appl. Phys. 95, 2123–2129 (2004) Jorgenson, J.W., Dohmeier, D.M.: Patent No. 5,115, 131 (1992) Sheehan, E.W.: Patent No. 5,838,002 (1998) Sheehan, E.W., Willoughby, R.C., Jarrell, J.A., Strand, D.M.: USA Patent No. 6,278,111 (2001) Kelly, R.T., Tolmachev, A.V., Page, J.S., Tang, K.Q., Smith, R.D.: The ion funnel: theory, implementations, and applications. Mass Spectrom. Rev. 28, 294–312 (2010) Gerlich, D.: State-selected and state-to-state ion–molecule reaction dynamics. Part 1. Experiment. In: Ng, C.Y., Baer, M. (eds.) State-Selected and State-to-State Ion–Molecule Reaction Dynamics, pp. 1–76. Wiley, New York (1992) Kinter, M.M., Sherman, N.E.: Protein Sequencing and Identification Using Tandem Mass Spectrometry. Wiley-Interscience, New York (2000) Shen, Y.F., Zhang, R., Moore, R.J., Kim, J., Metz, T.O., Hixson, K.K., Zhao, R., Livesay, E.A., Udseth, H.R., Smith, R.D.: Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000–1500 and capabilities in proteomics and metabolomics. Anal. Chem. 77, 3090–3100 (2005) Shen, Y.F., Zhao, R., Belov, M.E., Conrads, T.P., Anderson, G.A., Tang, K.Q., Pasa-Tolic, L., Veenstra, T.D., Lipton, M.S., Udseth, H.R., Smith, R.D.: Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. Anal. Chem. 73, 1766–1775 (2001) Kelly, R.T., Page, J.S., Luo, Q., Moore, R.J., Orton, D.J., Tang, K., Smith, R.D.: Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry. Anal. Chem. 78, 7796–7801 (2006) Marginean, I., Page, J., Tolmachev, A., Tang, K., Smith, R.D.: Achieving 50% ionization efficiency in subambient pressure ionization with nanoelectrospray. Anal. Chem. 82, 9344–9349 (2010) Ibrahim, Y., Tang, K., Tolmachev, A.V., Shvartsburg, A.A., Smith, R.D.: Improving mass spectrometer sensitivity using a high-pressure electrodynamic ion funnel interface. J. Am. Soc. Mass Spectrom. 17, 1299–1305 (2006) Marginean, I., Page, J.S., Kelly, R.T., Tang, K.Q., Smith, R.D.: Effect of pressure on electrospray characteristics. Appl. Phys. Lett. 95, 184103 (2009) Enke C.G.: A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Anal. Chem. 69, 4885–4893 (1997) Tang, K., Smith, R.D.: Physical/chemical separations in the break-up of highly charged droplets from electrosprays. J. Am. Soc. Mass Spectrom. 12, 343–347 (2001) Schmidt, A., Karas, M., Dülcks, T.: Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or when does ESI turn into Nano-ESI? J. Am. Soc. Mass Spectrom. 14, 492–500 (2003) Hopp, T.P., Woods, K.R.: Prediction of protein antigenic determinants from amino-acid-sequences. Proc. Natl. Acad. Sci. U. S. A. 78, 3824–3828 (1981) Thomson, B.A.: Declustering and fragmentation of protein ions from an electrospray ion source. J. Am. Soc. Mass Spectrom. 8, 1053–1058 (1997)