Metastable decay of photoionized niobium clusters: Clusters within a cluster?

Journal of Chemical Physics - Tập 89 Số 2 - Trang 780-789 - 1988
Sandhya Cole1, Kopin Liu1
1Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

Tóm tắt

The photoinduced metastable ion fragmentation of niobium clusters has been found to closely correlate with the laser vaporization source conditions. The experimental evidence indicates the clusters agglomerate in the supersonic expansion. These agglomerated clusters exhibit rather unique behavior for a transition metal system. Both evaporation and fission fragmentation are observed. Two color MPI studies reveal the existence of long lived neutral intermediate states. Also, the kinetic energy release is extremely small, <10 meV, and independent of the excitation energy. The concept of clusters within a cluster, i.e., agglomerated clusters, is introduced to rationalize many experimental findings.

Từ khóa


Tài liệu tham khảo

1979, Phys. Teacher, 17, 503, 10.1119/1.2340341

1986, Chem. Rev., 86, 491, 10.1021/cr00073a001

1983, J. Chem. Phys., 78, 5067, 10.1063/1.445375

1986, J. Chem. Phys., 84, 3491, 10.1063/1.450235

1981, Surf. Sci., 106, 95, 10.1016/0039-6028(81)90186-2

1985, Surf. Sci., 156, 112, 10.1016/0039-6028(85)90563-1

1982, J. Colloid Interface Sci., 87, 180, 10.1016/0021-9797(82)90381-2

1987, J. Phys. Chem., 91, 2450, 10.1021/j100294a001

1984, J. Chem. Phys., 80, 1451, 10.1063/1.446892

1984, J. Chem. Phys., 80, 1458, 10.1063/1.446893

1976, Phys. Rev. A, 13, 2287, 10.1103/PhysRevA.13.2287

1986, J. Chem. Phys., 85, 632, 10.1063/1.451589

1986, J. Chem. Phys., 86, 715

1986, J. Chem. Phys., 84, 2421, 10.1063/1.450354

1986, Z. Phys. D, 3, 309, 10.1007/BF01384821

1983, Chem. Phys. Lett., 99, 470, 10.1016/0009-2614(83)80176-6

1984, Int. J. Mass Spectrom. Ion Proc., 62, 277, 10.1016/0168-1176(84)87114-1

1983, Chem. Phys. Lett., 97, 155, 10.1016/0009-2614(83)85007-6

1986, Phys. Rev. Lett., 57, 2920, 10.1103/PhysRevLett.57.2920

1987, Phys. Rev. Lett., 59, 1895, 10.1103/PhysRevLett.59.1895

1987, Chem. Phys. Lett., 139, 233, 10.1016/0009-2614(87)80548-1

1988, J. Chem. Phys., 88, 6260, 10.1063/1.454465

1988, J. Chem. Phys., 88, 1622, 10.1063/1.454141

1975, J. Chem. Phys., 63, 2045, 10.1063/1.431542

1975, Phys. Rev. A, 11, 1068, 10.1103/PhysRevA.11.1068

1977, J. Chem. Phys., 66, 3233, 10.1063/1.434298

1977, J. Chem. Phys., 66, 5112, 10.1063/1.433769

1981, J. Chem. Phys., 75, 929, 10.1063/1.442091

1983, J. Chem. Phys., 78, 399, 10.1063/1.444515

1984, Phys. Rev. A, 30, 919, 10.1103/PhysRevA.30.919

1986, J. Chem. Phys., 84, 2783, 10.1063/1.450303

1986, J. Chem. Phys., 85, 5943, 10.1063/1.451506

1987, J. Chem. Phys., 87, 545, 10.1063/1.453602

1986, J. Chem. Phys., 85, 1697, 10.1063/1.451214

1980, Sci. Am., 242, 98, 10.1038/scientificamerican0480-98

1985, Phys. Rev. B, 31, 2539, 10.1103/PhysRevB.31.2539

1982, Phys. Rev. Lett., 48, 1734, 10.1103/PhysRevLett.48.1734

1985, Solid State Commun., 54, 149, 10.1016/0038-1098(85)91140-8

1987, Phys. Rev. Lett., 59, 190, 10.1103/PhysRevLett.59.190

1986, J. Chem. Phys., 84, 3078, 10.1063/1.450289

1984, Phys. Rev. Lett., 53, 2390, 10.1103/PhysRevLett.53.2390

1986, Chem. Rev., 86, 619, 10.1021/cr00073a006

1987, Solid State Phys., 40, 93, 10.1016/S0081-1947(08)60691-8

1987, J. Phys. Chem., 91, 3141, 10.1021/j100296a009

1987, Phys. Rev. Lett., 59, 1805, 10.1103/PhysRevLett.59.1805

1987, Phys. Rev. Lett., 59, 1906, 10.1103/PhysRevLett.59.1906

1984, Chem. Phys. Lett., 112, 20, 10.1016/0009-2614(84)87033-5

1986, J. Chem. Phys., 85, 3103, 10.1063/1.451019

1987, J. Chem. Phys., 87, 936, 10.1063/1.453248

1987, Chem. Phys. Lett., 139, 6, 10.1016/0009-2614(87)80141-0

1986, J. Chem. Phys., 84, 5389, 10.1063/1.449948

1983, J. Chem. Phys., 78, 5567, 10.1063/1.445437

1983, J. Phys. Chem., 87, 3227

1984, J. Phys. Chem., 88, 181, 10.1021/j150646a005