Functional circuitry of visual adaptation in the retina

Journal of Physiology - Tập 586 Số 18 - Trang 4377-4384 - 2008
Jonathan B. Demb1,2
1Department of Ophthalmology & Visual Sciences and Department of Molecular, Cellular & Developmental Biology, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
2Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105, USA.

Tóm tắt

The visual system continually adjusts its sensitivity, or ‘adapts’, to the conditions of the immediate environment. Adaptation increases responses when input signals are weak, to improve the signal‐to‐noise ratio, and decreases responses when input signals are strong, to prevent response saturation. Retinal ganglion cells adapt primarily to two properties of light input: the mean intensity and the variance of intensity over time (contrast). This review focuses on cellular mechanisms for contrast adaptation in mammalian retina. High contrast over the ganglion cell's receptive field centre reduces the gain of spiking responses. The mechanism for gain control arises partly in presynaptic bipolar cell inputs and partly in the process of spike generation. Following strong contrast stimulation, ganglion cells exhibit a prolonged after‐hyperpolarization, driven primarily by suppression of glutamate release from presynaptic bipolar cells. Ganglion cells also adapt to high contrast over their peripheral receptive field. Long‐range adaptive signals are carried by amacrine cells that inhibit the ganglion cell directly, causing hyperpolarization, and inhibit presynaptic bipolar terminals, reducing gain of their synaptic output. Thus, contrast adaptation in ganglion cells involves multiple synaptic and intrinsic mechanisms for gain control and hyperpolarization. Several forms of adaptation in ganglion cells originate in presynaptic bipolar cells.

Từ khóa


Tài liệu tham khảo

10.1016/S0896-6273(02)01050-4

10.1523/JNEUROSCI.4610-06.2007

10.1017/S0952523899162151

10.1017/S0952523800004995

10.1016/S1350-9462(00)00031-8

10.1523/JNEUROSCI.0284-06.2006

10.1038/82888

10.1523/JNEUROSCI.3726-05.2005

10.1523/JNEUROSCI.21-24-09904.2001

10.1080/713663221

10.1016/S0042-6989(00)00039-0

10.1016/S0896-6273(02)01100-5

Demb JB, 1999, Functional circuitry of the retinal ganglion cell's nonlinear receptive field, J Neurosci, 19, 9756, 10.1523/JNEUROSCI.19-22-09756.1999

10.1523/JNEUROSCI.5148-05.2006

10.1038/nature06150

10.1016/j.neuron.2008.01.031

10.1113/jphysiol.1980.sp013229

10.1523/JNEUROSCI.08-07-02303.1988

10.1523/JNEUROSCI.1093-07.2007

10.1152/jn.00618.2006

10.1038/nature03689

10.1523/JNEUROSCI.4784-07.2008

10.1523/JNEUROSCI.21-01-00287.2001

Kim KJ, 2003, Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells, J Neurosci, 23, 1506, 10.1523/JNEUROSCI.23-04-01506.2003

10.1152/jn.00086.2007

10.1002/cne.903290107

10.1016/j.neuron.2007.07.013

10.1523/JNEUROSCI.4274-07.2008

10.1016/j.neuron.2006.03.039

10.1038/nn1556

10.1016/j.neuron.2007.09.030

10.1523/JNEUROSCI.23-36-11332.2003

10.1098/rspb.1987.0040

10.1016/j.visres.2004.09.024

10.1523/JNEUROSCI.21-23-09445.2001

10.1038/nn1061

10.1113/jphysiol.1978.sp012571

10.1113/jphysiol.1979.sp012765

10.1152/jn.01309.2005

10.1038/386069a0

10.1523/JNEUROSCI.0821-06.2006

10.1016/S0896-6273(04)00178-3

10.1113/jphysiol.1987.sp016531

10.1002/cne.1373

10.1016/j.conb.2007.07.001

10.1038/nrn1497

10.1126/science.175.4025.1008

10.1103/PhysRevE.68.011901

10.1523/JNEUROSCI.23-07-02645.2003

10.1523/JNEUROSCI.2782-04.2005

10.1152/jn.01091.2006