Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass
Tóm tắt
Từ khóa
Tài liệu tham khảo
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315: 804-807. 10.1126/science.1137016
Wilson DB: Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 2008, 1125: 289-297. 10.1196/annals.1419.026
McCann MC, Carpita NC: Designing the deconstruction of plant cell walls. Curr Opin Plant Biol 2008, 11: 314-320. 10.1016/j.pbi.2008.04.001
Zhang YH, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR: Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 2007, 97: 214-223. 10.1002/bit.21386
Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabanas A, Ballesteros M: Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 2003, 105–108: 87-100.
Wyman CE: What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 2007, 25: 153-157. 10.1016/j.tibtech.2007.02.009
Klinke HB, Thomsen AB, Ahring BK: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 2004, 66: 10-26. 10.1007/s00253-004-1642-2
Barakat A, Monlau F, Steyer JP, Carrere H: Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour Technol 2012, 104: 90-99.
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002
Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M, Carroll S, Allman S, Phelps TJ, Keller M, Elkins JG: Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol 2010, 76: 1014-1020. 10.1128/AEM.01903-09
Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM: Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 2008, 19: 210-217. 10.1016/j.copbio.2008.04.007
Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW: Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “ Anaerocellum thermophilum ” DSM 6725. Appl Environ Microbiol 2009, 75: 4762-4769. 10.1128/AEM.00236-09
Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin Y, Xu Y, Kataeva I, Poole FL 2nd, Adams MW: Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol 2012, 194: 4015-4028. 10.1128/JB.00266-12
Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J: Methylation by a unique alpha-class N4-cytosine methyltransferase is required for DNA transformation of caldicellulosiruptor bescii DSM6725. PLoS One 2012, 7: e43844. 10.1371/journal.pone.0043844
Tanisho S, Kamiya N, Wakao N: Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochim Biophys Acta 1989, 973: 1-6. 10.1016/S0005-2728(89)80393-7
Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H: Enhanced hydrogen production from glucose using ldh - and frd -inactivated Escherichia coli strains. Appl Microbiol Biotechnol 2006, 73: 67-72. 10.1007/s00253-006-0456-9
Liu X, Zhu Y, Yang ST: Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog 2006, 22: 1265-1275.
Collet C, Girbal L, Peringer P, Schwitzguebel JP, Soucaille P: Metabolism of lactose by Clostridium thermolacticum growing in continuous culture. Arch Microbiol 2006, 185: 331-339. 10.1007/s00203-006-0098-4
Chin HL, Chen ZS, Chou CP: Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 2003, 19: 383-388. 10.1021/bp0200604
Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T: Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 2005, 116: 271-282. 10.1016/j.jbiotec.2004.11.002
Kadar Z, de Vrije T, van Noorden GE, Budde MA, Szengyel Z, Reczey K, Claassen PA: Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus . Appl Biochem Biotechnol 2004, 114: 497-508. 10.1385/ABAB:114:1-3:497
Kadar Z, de Vrije T, Mars AE, Budde MA, Lai MH, Dijkema C, de Waard P, Claassen PA: Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus . Appl Microbiol Biotechnol 2007, 74: 1358-1367. 10.1007/s00253-006-0783-x
Schroder C, Selig M, Schonheit P: Glucose fermentation to acetate, CO 2 and H 2 in the anaerobic hyperthermophilic eubacterium thermotoga-maritima - involvement of the embden-meyerhof pathway. Arch Microbiol 1994, 161: 460-470.
Willquist K, Zeidan AA, van Niel EW: Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus : an efficient hydrogen cell factory. Microb Cell Fact 2010, 9: 89. 10.1186/1475-2859-9-89
Schicho RN, Ma K, Adams MW, Kelly RM: Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus . J Bacteriol 1993, 175: 1823-1830.
Schut GJ, Adams MW: The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 2009, 191: 4451-4457. 10.1128/JB.01582-08
Chung D, Cha M, Farkas J, Westpheling J: Construction of a stable replicating shuttle vector for caldicellulosiruptor species: Use for extending genetic methodologies to other members of this genus. PLoS One 2013, 8: e62881. 10.1371/journal.pone.0062881
Chung D, Farkas J, Westpheling J: Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement with non-replicating plasmid vectors. Biotech biofuels 2013, 6: 82. 10.1186/1754-6834-6-82
Farkas J, Chung D, Cha M, Copeland J, Grayeski P, Westpheling J: Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii . J Ind Microbiol Biotechnol 2013, 40: 41-49. 10.1007/s10295-012-1202-1
Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR: Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 2008, 105: 13769-13774. 10.1073/pnas.0801266105
Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC: High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 2011, 77: 8288-8294. 10.1128/AEM.00646-11
Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR: Development of pyrF -based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 2010, 76: 6591-6599. 10.1128/AEM.01484-10
Ozkan M, Yilmaz EI, Lynd LR, Ozcengiz G: Cloning and expression of the Clostridium thermocellum L-lactate dehydrogenase gene in Escherichia coli and enzyme characterization. Can J Microbiol 2004, 50: 845-851. 10.1139/w04-071
Thauer RK, Jungermann K, Decker K: Energy conversion in chemotrophic anaerobic bacteria. Bacteriol Rev 1971, 41: 100-180.
Svetlichnyi VA, Svetlichnaya TP, Chernykh NA, Zavarzin GA: Anaerocellum-thermophilum Gen-Nov Sp-Nov - an extremely thermophilic cellulolytic eubacterium isolated from Hot-springs in the valley of geysers. Microbiol 1990, 59: 598-604.
