Exploratory factor analysis: Current use, methodological developments and recommendations for good practice

Springer Science and Business Media LLC - Tập 40 - Trang 3510-3521 - 2019
David Goretzko1, Trang Thien Huong Pham1, Markus Bühner1
1Department of Psychology, Ludwig Maximilians University Munich, Munich, Germany

Tóm tắt

Psychological research often relies on Exploratory Factor Analysis (EFA). As the outcome of the analysis highly depends on the chosen settings, there is a strong need for guidelines in this context. Therefore, we want to examine the recent methodological developments as well as the current practice in psychological research. We reviewed ten years of studies containing EFAs and contrasted them with new methodological options. We focused on four major issues: an adequate sample size, the extraction method, the rotation method and the factor retention criterion determining the number of factors. Finally, we present modified recommendations based on these reviewed empirical studies and practical considerations.

Tài liệu tham khảo

Baglin, J. (2014). Improving your exploratory factor analysis for ordinal data: A demonstration using FACTOR. Practical Assessment, Research & Evaluation, 19, 5 Retrieved from http://pareonline.net/getvn.asp?v=19&n=5. Accessed 15 Dec 2017 Barendse, M. T., Oort, F. J., & Timmerman, M. E. (2015). Using exploratory factor analysis to determine the dimensionality of discrete responses. Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 87–101. https://doi.org/10.1080/10705511.2014.934850. Beauducel, A., & Herzberg, P. Y. (2006). On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA. Structural Equation Modeling, 13(2), 186–203. https://doi.org/10.1207/s15328007sem1302_2. Beavers, A. S., Lounsbury, J. W., Richards, J. K., Huck, S. W., Skolits, G. J., & Esquivel, S. L. (2013). Practical considerations for using exploratory factor analysis in educational research. Practical Assessment, Research & Evaluation, 18(6) Retrieved from http://pareonline.net/getvn.asp?v=18&n=6. Accessed 15 Dec 2017 Borsboom, D., Mellenbergh, G. J., & Van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110(2), 203–219. https://doi.org/10.1037/0033-295X.110.2.203. Braeken, J., & Van Assen, M. A. (2017). An empirical Kaiser criterion. Psychological Methods, 22(3), 450–466. https://doi.org/10.1037/met0000074. Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8(1), 1–24 Retrieved from http://hdl.handle.net/10520/AJA0038271X_175. Accessed 28 Mar 2018 Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111–150. https://doi.org/10.1207/S15327906MBR3601_05. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258. https://doi.org/10.1177/0049124192021002005. Cabrera-Nguyen, P. (2010). Author guidelines for reporting scale development and validation results in the journal of the Society for Social Work and Research. Journal of the Society for Social Work and Research, 1(2), 99–103. https://doi.org/10.5243/jsswr.2010.8. Conway, J. M., & Huffcutt, A. I. (2003). A review and evaluation of exploratory factor analysis practices in organizational research. Organizational Research Methods, 6(2), 147–168. https://doi.org/10.1177/1094428103251541. Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 1–9 Retrieved from http://pareonline.net/getvn.asp?v=10&n=7. Accessed 24 Oct 2017 Crawford, C. B., & Ferguson, G. A. (1970). A general rotation criterion and its use in orthogonal rotation. Psychometrika, 35(3), 321–332. https://doi.org/10.1007/BF02310792. Cureton, E. E., & Mulaik, S. A. (1975). The weighted varimax rotation and the promax rotation. Psychometrika, 40(2), 183–195. https://doi.org/10.1007/BF02291565. De Winter, J. C. F., & Dodou, D. (2012). Factor recovery by principal axis factoring and maximum likelihood factor analysis as a function of factor pattern and sample size. Journal of Applied Statistics, 39(4), 695–710. https://doi.org/10.1080/02664763.2011.610445. Dinno, A. (2009). Exploring the sensitivity of Horn's parallel analysis to the distributional form of random data. Multivariate Behavioral Research, 44(3), 362–388. https://doi.org/10.1080/00273170902938969. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. https://doi.org/10.1037/1082-989X.4.3.272. Ford, J. K., MacCallum, R. C., & Tait, M. (1986). The application of exploratory factor analysis in applied psychology: A critical review and analysis. Personnel Psychology, 39(2), 291–314. https://doi.org/10.1111/j.1744-6570.1986.tb00583.x. Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale: Lawrence Erlbaum Associates. Gorsuch, R. L. (1990). Common factor analysis versus component analysis: Some well and little known facts. Multivariate Behavioral Research, 25(1), 33–39. https://doi.org/10.1207/s15327906mbr2501_3. Gorsuch, R. L. (1997). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68(3), 532–560. https://doi.org/10.1207/s15327752jpa6803_5. Harman, H. H., & Jones, W. H. (1966). Factor analysis by minimizing residuals (minres). Psychometrika, 31(3), 351–368. https://doi.org/10.1007/BF02289468. Hirose, K., & Yamamoto, M. (2014). Estimation of an oblique structure via penalized likelihood factor analysis. Computational Statistics & Data Analysis, 79, 120–132. https://doi.org/10.1016/j.csda.2014.05.011. Hirose, K., & Yamamoto, M. (2015). Sparse estimation via nonconcave penalized likelihood in factor analysis model. Statistics and Computing, 25(5), 863–875. https://doi.org/10.1007/s11222-014-9458-0. Hogarty, K. Y., Hines, C. V., Kromrey, J. D., Ferron, J. M., & Mumford, K. R. (2005). The quality of factor solutions in exploratory factor analysis: The influence of sample size, communality, and overdetermination. Educational and Psychological Measurement, 65(2), 202–226. https://doi.org/10.1177/0013164404267287. Holgado-Tello, F. P., Chacón-Moscoso, S., Barbero-García, I., & Vila-Abad, E. (2010). Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Quality & Quantity, 44(1), 153–166. https://doi.org/10.1007/s11135-008-9190-y. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447. Ihara, M., & Kano, Y. (1986). A new estimator of the uniqueness in factor analysis. Psychometrika, 51(4), 563–566. https://doi.org/10.1007/BF02295595. Jin, S., Moustaki, I., & Yang-Wallentin, F. (2018). Approximated penalized maximum likelihood for exploratory factor analysis: An orthogonal case. Psychometrika, 83(3), 628–649. https://doi.org/10.1007/s11336-018-9623-z. Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32(4), 443–482. https://doi.org/10.1007/BF02289658. Jöreskog, K. G., & Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36(3), 347–387. https://doi.org/10.1207/S15327906347-387. Jöreskog, K. G., Olsson, U. H., & Yang-Wallentin, F. (2016). Multivariate analysis with LISREL. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-33153-9. Jung, S., & Lee, S. (2011). Exploratory factor analysis for small samples. Behavior Research Methods, 43(3), 701–709. https://doi.org/10.3758/s13428-011-0077-9. Jung, S., & Takane, Y. (2008). Regularized common factor analysis. In K. Shigemasu, A. Okada, T. Imaizumi, & T. Hoshino (Eds.), New trends in psychometrics (pp. 141–149). Tokyo: University Academic Press. Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817. Kaiser, H. F. (1976). Image and anti-image covariance matrices from a correlation matrix that may be singular. Psychometrika, 41(3), 295–300. https://doi.org/10.1007/BF02293555. Katsikatsou, M., Moustaki, I., Yang-Wallentin, F., & Jöreskog, K. G. (2012). Pairwise likelihood estimation for factor analysis models with ordinal data. Computational Statistics & Data Analysis, 56(12), 4243–4258. https://doi.org/10.1016/j.csda.2012.04.010. Klein, O., Hardwicke, T. E., Aust, F., Breuer, J., Danielsson, H., Hofelich Mohr, A., … Frank, M. C. (2018). A practical guide for transparency in psychological science. Retrieved from https://osf.io/79epu. Accessed 28 Mar 2018 Lorenzo, U., & Ferrando, P. J. (1996). FACOM: A library for relating solutions obtained in exploratory factor analysis. Behavior Research Methods, Instruments, & Computers, 28(4), 627–630. https://doi.org/10.3758/BF03200553. Lorenzo, U., & Ferrando, P. J. (1998). NFACOM: A new program for relating solutions in exploratory factor analysis. Behavior Research Methods, Instruments, & Computers, 30(4), 724–725. https://doi.org/10.3758/BF03209493. Lorenzo-Seva, U. (2000). The weighted oblimin rotation. Psychometrika, 65(3), 301–318. https://doi.org/10.1007/BF02296148. Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. (2011). The Hull method for selecting the number of common factors. Multivariate Behavioral Research, 46(2), 340–364. https://doi.org/10.1080/00273171.2011.564527. MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84–99. https://doi.org/10.1037/1082-989X.4.1.84. Maroof, D. A. (2012). Exploratory factor analysis. In D. A. Maroof (Ed.), Statistical methods in neuropsychology: Common procedures made comprehensible (pp. 23–34). New York: Springer Science + Business Media, LLC. https://doi.org/10.1007/978-1-4614-3417-7_4. Marsh, H. W., Morin, A. J., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10, 85–110. https://doi.org/10.1146/annurev-clinpsy-032813-153700. Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5(2), 159–168. https://doi.org/10.1207/s15327574ijt0502_4. Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9(4), 599–620. https://doi.org/10.1207/S15328007SEM0904_8. Myers, N. D., Jin, Y., Ahn, S., Celimli, S., & Zopluoglu, C. (2015). Rotation to a partially specified target matrix in exploratory factor analysis in practice. Behavior Research Methods, 47(2), 494–505. https://doi.org/10.3758/s13428-014-0486-7. Peres-Neto, P. R., Jackson, D. A., & Somers, K. M. (2005). How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Computational Statistics & Data Analysis, 49(4), 974–997. https://doi.org/10.1016/j.csda.2004.06.015. Preacher, K. J., Zhang, G., Kim, C., & Mels, G. (2013). Choosing the optimal number of factors in exploratory factor analysis: A model selection perspective. Multivariate Behavioral Research, 48(1), 28–56. https://doi.org/10.1080/00273171.2012.710386. Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354–373. https://doi.org/10.1037/a0029315. Rouquette, A., & Falissard, B. (2011). Sample size requirements for the internal validation of psychiatric scales. International Journal of Methods in Psychiatric Research, 20(4), 235–249. https://doi.org/10.1002/mpr.352. Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure. Psychological Assessment, 24(2), 282–292. https://doi.org/10.1037/a0025697. Sass, D. A., & Schmitt, T. A. (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45(1), 73–103. https://doi.org/10.1080/00273170903504810. Schmitt, T. A. (2011). Current methodological considerations in exploratory and confirmatory factor analysis. Journal of Psychoeducational Assessment, 29(4), 304–321. https://doi.org/10.1177/0734282911406653. Schmitt, T. A., & Sass, D. A. (2011). Rotation criteria and hypothesis testing for exploratory factor analysis: Implications for factor pattern loadings and interfactor correlations. Educational and Psychological Measurement, 71(1), 95–113. https://doi.org/10.1177/0013164410387348. Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47(5), 609–612. https://doi.org/10.1016/j.jrp.2013.05.009. Shrout, P. E., & Rodgers, J. L. (2018). Psychology, science, and knowledge construction: Broadening perspectives from the replication crisis. Annual Review of Psychology, 69, 487–510. https://doi.org/10.1146/annurev-psych-122216-011845. Steiger, J. H. (1979). Factor indeterminacy in the 1930's and the 1970's some interesting parallels. Psychometrika, 44(2), 157–167. https://doi.org/10.1007/BF02293967. Steiger, J. H., & Schönemann, P. H. (1978). A history of factor indeterminacy. In S. Shye (Ed.), Theory construction and data analysis in the behavioral sciences (pp. 136–178). San Francisco: Jossey-Bass. Suhr, D. D. (2005). Principal component analysis vs. exploratory factor analysis (paper 203-30). Paper presented at the meeting of the SAS Users Group International (SUGI 30), Philadelphia, PA. Retrieved from http://www2.sas.com/proceedings/sugi30/203-30.pdf. Accessed 17 Oct 2017 Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209–220. https://doi.org/10.1037/a0023353. Widaman, K. F. (2012). Exploratory factor analysis and confirmatory factor analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol 3: Data analysis and research publication (pp. 361–389). Washington, DC: American Psychological Association. Yong, A. G., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutorial in Quantitative Methods for Psychology, 9(2), 79–94. https://doi.org/10.20982/tqmp.09.2.079. Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99(3), 432–442. https://doi.org/10.1037/0033-2909.99.3.432.