Thermomechanical and cyclic behavior of biocomposites based on renewable thermoplastics from dimer fatty acids

Wiley - Tập 134 Số 12 - 2017
Marie Reulier1, Rodrigue Matadi Boumbimba2, Zarah Walsh1, Régis Vaudemont3, Luc Avérous1
1BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2 67087, France
2Laboratory of Mechanics, Biomechanics, Polymers and Structures, National Engineering School of Metz, University of Lorraine; 1 route d'Ars Laquenexy cs6582 Metz Cedex 3 57078 France
3Department, Z.A.E Robert Steichen; Luxembourg Institute of Science and Technology (LIST), Material Research and Technology (MRT); 5 rue Bommel Hautcharage L-4940 Luxembourg

Tóm tắt

ABSTRACTMicrobiocomposites based on renewable thermoplastic matrices such as thermoplastic polyurethane (TPU) and polyamide (DAPA), synthesized from dimer fatty acids, and high aspect ratio talc were prepared. TPU/DAPA blends and their corresponding biocomposites exhibited mechanical behavior, which is linked to those of the matrices and their relative contents, i.e., going from a typical semicrystalline behavior (DAPA) to an elastomeric one (TPU). The understanding of the thermomechanical and cyclic behavior of these advanced materials, particularly for TPU/DAPA with high TPU content, is detailed. Addition of particles of high aspect ratio natural talc (HAR) improved the storage modulus over the whole temperature range (almost five times with 5 wt % HAR). Under cyclic manipulation, the biocomposites displayed a stress softening related to the Mullins' effect. An increase of the hysteresis and the residual deformation with the HAR content has been shown. The hyperelastic models of Mooney–Rivlin and Ogden–Dorfmann, used to predict the loading and unloading behavior, fitted with experimental data. The present work also reports the experimental characterization of the deformation mechanisms of these renewable biocomposites through different microscopic techniques at different scales, such as atomic force, scanning electron and transmission electron microscopies. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44610.

Từ khóa


Tài liệu tham khảo

10.1089/ind.2015.28999.fae

10.1016/j.polymer.2010.10.026

10.1016/j.polymdegradstab.2011.03.006

10.1016/j.polymdegradstab.2012.03.002

10.1002/mame.201100278

10.1002/(SICI)1097-4628(19980411)68:2<305::AID-APP12>3.0.CO;2-W

10.1016/j.eurpolymj.2014.11.036

Reulier M., 2016, J. Appl. Polym. Sci., 133

10.5254/1.3546914

10.1016/j.matdes.2013.02.055

10.1016/j.eurpolymj.2011.01.001

10.1016/j.polymer.2014.11.006

10.1016/j.mechmat.2009.05.002

Nowak Z., 2014, Eng. Trans., 56, 117

10.1002/pol.1955.120188802

10.1002/pol.1953.120100303

10.1002/pen.23692

Mezger T. G., 2006, The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers

10.3144/expresspolymlett.2007.88

10.1002/pc.22993

10.1002/pc.22914

Ciullo P. A., 1996, Industrial Minerals and Their Uses: A Handbook and Formulary

10.1016/j.polymertesting.2014.03.016

10.1016/j.matlet.2004.07.003

10.1007/3-540-15830-8_3

10.1002/app.1960.070041017

10.5254/1.3547460

10.1016/0095-8522(51)90030-X

10.1063/1.1712836

10.1016/0095-8522(57)90016-8

10.1098/rspa.1972.0026

10.1016/B978-0-08-051667-7.50015-9

10.1007/BF01793684

10.1063/1.1723791

10.1039/tf9444000059

10.1063/1.1700682

10.1016/0022-5096(93)90013-6

10.1098/rsta.1948.0024

10.1098/rspa.1999.0431

10.1016/j.ijsolstr.2003.11.014

10.1016/j.polymertesting.2008.09.001

10.1002/app.36596