Ordered mesoporous In-(TiO 2 /WO 3 ) nanohybrid: An ultrasensitive n -butanol sensor

Earthquake Spectra - Tập 239 - Trang 364-373 - 2017
Ritu Malik1, Vijay K. Tomer2, Vandna Chaudhary3, Manjeet S. Dahiya1, S.P. Nehra3,4, Pawan S. Rana1, Surender Duhan2
1Materials Research Laboratory, Department of Physics, D.C.R. University of Science & Technology, Murthal, Sonepat, Haryana 131039, India
2Department of Materials Science & Nanotechnology, D.C.R. University of Science & Technology, Murthal, Sonepat, Haryana 131039, India
3Center of Excellence for Energy and Environmental Studies, D.C.R. University of Science & Technology, Murthal, Sonepat, Haryana, 131039, India
4Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, USA

Tài liệu tham khảo

Mølhave, 1982, Indoor air pollution due to organic gases and vapours of solvents in building materials, Environ. Int., 8, 117, 10.1016/0160-4120(82)90019-8 Brown, 1994, Concentrations of volatile organic compounds in indoor air —a review, Indoor Air, 4, 123, 10.1111/j.1600-0668.1994.t01-2-00007.x Wolkoff, 2001, Organic compounds in indoor air—their relevance for perceived indoor air quality?, Atmos. Environ., 35, 4407, 10.1016/S1352-2310(01)00244-8 −Jorgensen, 1999, Time course of sensory eye irritation in humans exposed to N-butanol and 1-octene, Arch. Environ. Health: Int. J., 54, 86, 10.1080/00039899909602241 Shusterman, 1992, Critical review: the health significance of environmental odor pollution, Arch. Environ. Health: Int. J., 47, 76, 10.1080/00039896.1992.9935948 Koren, 1992, Human upper respiratory tract responses to inhaled pollutants with emphasis on nasal lavage, Ann. N. Y. Acad. Sci., 641, 215, 10.1111/j.1749-6632.1992.tb16545.x Mølhave, 1991, Subjective reactions to volatile organic compounds as air pollutants, Atmos. Environ. Part A. Gen. Top., 25, 1283, 10.1016/0960-1686(91)90240-8 Hahn, 2013, Butanols Liu, 2013, Generalized and high temperature synthesis of a series of crystalline mesoporous metal oxides based nanocomposites with enhanced catalytic activities for benzene combustion, J. Mater. Chem. A, 1, 4089, 10.1039/c3ta01505j Tomer, 2016, Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors, J. Mater. Chem. A., 4, 1033, 10.1039/C5TA08336B Tomer, 2016, A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance, Sens. Actuators B, 223, 750, 10.1016/j.snb.2015.09.139 Tomer, 2016, Highly sensitive and selective sensors to volatile organic amines (VOAs) using mesoporous WO3-SnO2 nanohybrids, Sens. Actuators B., 229, 321, 10.1016/j.snb.2016.01.124 Duhan, 2014, Mesoporous silica: making sense of sensors, 149 Li, 2015, The preparation of Cr2O3@WO3 hierarchical nanostructures and their application in the detection of volatile organic compounds (VOCs), RSC Adv., 5, 61528, 10.1039/C5RA06667K Tomer, 2015, A novel highly sensitive humidity sensor based on ZnO/SBA-15 hybrid nanocomposite, J. Am. Ceram. Soc., 98, 3719, 10.1111/jace.13836 Choi, 2014, Rh-catalyzed WO3 with anomalous humidity dependence of gas sensing characteristics, RSC Adv., 4, 53130, 10.1039/C4RA06654E Tomer, 2015, Humidity sensing properties of Ag0 nano particles supported WO3-SiO2 with super rapid response and excellent stability, Eur. J. Inorg. Chem., 5232, 10.1002/ejic.201500858 Kim, 2016, Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by Rh2O3 nanoparticles, Sens. Actuators B, 224, 185, 10.1016/j.snb.2015.10.021 Malik, 2016, Nano gold supported on ordered mesoporous WO3/SBA-15 hybrid nanocomposite for oxidative decolorization of Azo dye, Microporous Mesoporous Mater., 225, 245, 10.1016/j.micromeso.2015.12.013 Gui, 2013, Preparation and gas sensitivity of WO3 hollow microspheres and SnO2 doped heterojunction sensors, Mater. Sci. Semicond. Process., 16, 1531, 10.1016/j.mssp.2013.05.012 Feng, 2015, Facile synthesis and gas sensing properties of In2O3–WO3 heterojunction nanofibers, Sens. Actuators B, 209, 622, 10.1016/j.snb.2014.12.019 Kundu, 2016, Enhanced performance of γ-Fe2O3: WO3 nanocomposite towards selective acetone vapor detection, Ceram. Int., 42, 7309, 10.1016/j.ceramint.2016.01.127 Malik, 2016, Microflower assembly of porous Au loaded TiO2/SnO2 nanohybrids as highly efficient visible light photocatalyst and selective VOCs sensor, Chem. Sel. Liu, 2013, Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination, Sens. Actuators B, 185, 1, 10.1016/j.snb.2013.04.090 Zhang, 2014, TiO2(B) nanoparticle-functionalized WO3 nanorods with enhanced gas sensing properties, Phys. Chem. Chem. Phys, 16, 10830, 10.1039/C4CP00356J Leghari, 2013, WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst, Mater. Res. Bull., 48, 3822 Meng, 2016, A novel mixed potential NH3 sensor based on TiO2@WO3 core?shell composite sensing electrode, Electrochim. Acta, 193, 302, 10.1016/j.electacta.2016.02.028 Zanetti, 2014, Soft-chemical synthesis, characterization and humidity sensing behavior of WO3/TiO2 nanopowders, Sens. Actuators B, 190, 40, 10.1016/j.snb.2013.08.053 Sun, 2015, Modification of TiO2 nanotubes by WO3 species for improving their photocatalytic activity, App. Surf. Sci., 343, 181, 10.1016/j.apsusc.2015.02.148 Wang, 2016, Highly sensitive and selective ethanol sensor fabricated with In- doped 3DOM ZnO, ACS Appl. Mater. Interfaces, 8, 5466, 10.1021/acsami.6b00339 Temerk, 2016, A new sensor based on In doped CeO2 nanoparticles modified glassy carbon paste electrode for sensitive determination of uric acid in biological fluids, Sens. Actuators B, 224, 868, 10.1016/j.snb.2015.11.029 Pugh, 2015, Enhanced gas sensing performance of indium doped zinc oxide nanopowders, RSC Adv., 5, 85767, 10.1039/C5RA11613A Tomer, 2015, One pot synthesis of mesoporous ZnO-SiO2 nanocomposite for room temperature relative humidity sensor, Colloids Surf. A: Physicochem. Eng. Asp., 483, 121, 10.1016/j.colsurfa.2015.07.046 Tomer, 2016, Mesoporous materials & their nanocomposites, 223 Moudler, 1995, Handbook of X-ray Photoelectron Spectroscopy Nefedov, 1984 Wagner, 1979 Xu, 2015, Tunable synthesis of uniform ZnO nanospheres and their size-dependent gas sensing performance toward n-butanol, Mater. Lett., 161, 495, 10.1016/j.matlet.2015.08.155 Kaneti, 2014, Solvothermal synthesis of ZnO-decorated α-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol, J. Mater. Chem. A, 2, 13283, 10.1039/C4TA01837K Liu, 2015, A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route, RSC Adv., 5, 54372, 10.1039/C5RA05148G Wang, 2014, Brookite TiO2 decorated α-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application, J. Mater. Chem. A, 2, 7935, 10.1039/c4ta00163j Wang, 2015, Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances, RSC Adv., 5, 10048, 10.1039/C4RA14033H Gu, 2013, Preferential growth of long ZnO nanowires and its application in gas sensor, Sens. Actuators B, 177, 453, 10.1016/j.snb.2012.11.044 Wang, 2014, Synthesis and gas sensor application of ZnFe2O4–ZnO composite hollow microspheres, RSC Adv., 4, 57967, 10.1039/C4RA10659H Wang, 2015, One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor, Sens. Actuators B, 207, 83, 10.1016/j.snb.2014.10.032 Wang, 2014, Synthesis and gas sensor application of ZnFe2O4?ZnO composite hollow microspheres, RSC Adv., 4, 57967, 10.1039/C4RA10659H Kaneti, 2013, Controllable synthesis of ZnO nanoflakes with exposed (101̅0) for enhanced gas sensing performance, J. Phys. Chem. C, 117, 13153, 10.1021/jp404329q