Asymptotic inference about predictive accuracy using high frequency data
Tài liệu tham khảo
Aït-Sahalia, 2009, Testing for jumps in a discretely observed process, Ann. Statist., 37, 184, 10.1214/07-AOS568
Aït-Sahalia, 2005, How often to sample a continuous-time process in the presence of market microstructure noise, Rev. Financ. Stud., 18, 351, 10.1093/rfs/hhi016
Amaya, 2015, Does realized skewness predict the cross-section of equity returns?, J. Financ. Econom., 118, 135, 10.1016/j.jfineco.2015.02.009
Andersen, 1998, Answering the skeptics: Yes, standard volatility models do provide accurate forecasts, Internat. Econom. Rev., 39, 885, 10.2307/2527343
Andersen, 2006, Volatility and correlation forecasting, 10.1016/S1574-0706(05)01015-3
Andersen, 2003, Modeling and forecasting realized volatility, Econometrica, 71, 579, 10.1111/1468-0262.00418
Andersen, 2005, Correcting the errors: Volatility forecast evaluation using high-frequency data and realized volatilities, Econometrica, 73, 279, 10.1111/j.1468-0262.2005.00572.x
Andrews, 1991, Heteroskedasticity and autocorrelation consistent covariance matrix estimation, Econometrica, 59, 817, 10.2307/2938229
Bandi, 2016, Price and volatility co-jumps, J. Financ. Econom., 119, 107, 10.1016/j.jfineco.2015.05.007
Bandi, 2008, Microstructure noise, realized volatility and optimal sampling, Rev. Econom. Stud., 75, 339, 10.1111/j.1467-937X.2008.00474.x
Barndorff-Nielsen, 2008, Designing realized kernels to measure the ex post variation of equity prices in the presence of noise, Econometrica, 76, 1481, 10.3982/ECTA6495
Barndorff-Nielsen, 2010, Measuring downside risk: realised semivariance, 117
Barndorff-Nielsen, 2004, Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics, Econometrica, 72, 885, 10.1111/j.1468-0262.2004.00515.x
Barndorff-Nielsen, 2004, Power and bipower variation with stochastic volatility and jumps (with discussion), J. Financ. Econom., 2, 1
Bollerslev, 1986, Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31, 307, 10.1016/0304-4076(86)90063-1
Bollerslev, 2002, Estimating stochastic volatility diffusions using conditional moments of integrated volatility, J. Econometrics, 109, 33, 10.1016/S0304-4076(01)00141-5
Cappiello, 2006, Asymmetric dynamics in the correlations of global equity and bond returns, J. Financ. Econom., 4, 537
Clark, 2005, Evaluating direct multistep forecasts, Econometric Rev., 24, 369, 10.1080/07474930500405683
Comte, 1998, Long memory in continuous-time stochastic volatility models, Math. Finance, 8, 291, 10.1111/1467-9965.00057
Corradi, 2006, Semi-parametric comparison of stochastic volatility models using realized measures, Rev. Econom. Stud., 73, 635, 10.1111/j.1467-937X.2006.00390.x
Corradi, 2009, Predictive density estimators for daily volatility based on the use of realized measures, J. Econometrics, 150, 119, 10.1016/j.jeconom.2008.12.015
Corradi, 2011, Predictive inference for integrated volatility, J. Amer. Statist. Assoc., 106, 1496, 10.1198/jasa.2011.tm10012
Corradi, 2007, Nonparametric bootstrap procedures for predictive inference based on recursive estimation schemes, Internat. Econom. Rev., 48, 67, 10.1111/j.1468-2354.2007.00418.x
Corsi, 2009, A simple approximate long memory model of realized volatility, J. Financ. Econom., 7, 174
Davidson, 1994
Diebold, 1995, Comparing predictive accuracy, J. Bus. Econom. Statist., 253
Duffie, 2001
Engle, 1982, Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica, 50, 987, 10.2307/1912773
Engle, 2002, Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models, J. Bus. Econom. Statist., 20, 339, 10.1198/073500102288618487
Engle, 2008
Foster, 1996, Continuous record asymptotics for rolling sample variance estimators, Econometrica, 64, 139, 10.2307/2171927
Giacomini, 2009, Detecting and predicting forecast breakdowns, Rev. Econom. Stud., 76, 669, 10.1111/j.1467-937X.2009.00545.x
Giacomini, 2006, Tests of conditional predictive ability, Econometrica, 74, 1545, 10.1111/j.1468-0262.2006.00718.x
Glosten, 1993, On the relation between the expected value and the volatility of the nominal excess return on stocks, J. Financ., 48, 1779, 10.1111/j.1540-6261.1993.tb05128.x
Gonçalves, 2003, Consistency of the stationary bootstrap under weak moment conditions, Econom. Lett., 81, 273, 10.1016/S0165-1765(03)00192-7
Gonçalves, 2002, The bootstrap of the mean for dependent heterogeneous arrays, Econom. Theory, 18, 1367, 10.1017/S0266466602186051
Granger, 1999, Outline of forecast theory using generalized cost functions, Spanish Econom. Rev., 1, 161, 10.1007/s101080050007
Hansen, 1982, Large sample properties of generalized method of moments estimators, Econometrica, 50, 1029, 10.2307/1912775
Hansen, 2005, A test for superior predictive ability, J. Bus. Econom. Statist., 23, 365, 10.1198/073500105000000063
Hansen, 2006, Consistent ranking of volatility models, J. Econometrics, 131, 97, 10.1016/j.jeconom.2005.01.005
Hansen, 2011, The model confidence set, Econometrica, 79, 453, 10.3982/ECTA5771
Hansen, 2012, Choice of Sample Split in Out-of-Sample Forecast Evaluation
Huang, 2005, The relative contribution of jumps to total price variance, J. Financ. Econom., 4, 456
Inoue, 2004, In-sample or out-of-sample tests of predictability: Which one should we use?, Econometric Rev., 23, 371, 10.1081/ETC-200040785
Jacod, 2008, Asymptotic properties of realized power variations and related functionals of semimartingales, Stochastic Process. Appl., 118, 517, 10.1016/j.spa.2007.05.005
Jacod, 2012
Jacod, 2013, Quarticity and other functionals of volatility: Efficient estimation, Ann. Statist., 118, 1462
Kanaya, 2016, Estimation of stochastic volatility models by nonparametric filtering, Econom. Theory, 32, 861, 10.1017/S0266466615000079
Kiefer, 2005, A new asymptotic theory for heteroskedasticity-autocorrelation robust tests, Econom. Theory, 21, 1130, 10.1017/S0266466605050565
Kristensen, 2010, Nonparametric filtering of the realized spot volatility: A kernel-based approach, Econom. Theory, 26, 60, 10.1017/S0266466609090616
Lepingle, 1976, La variation d’ordre p des semi-martingales, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 36, 295, 10.1007/BF00532696
Mancini, 2001, Disentangling the jumps of the diffusion in a geometric jumping Brownian motion, Giornale dell’Istituto Italiano degli Attuari, LXIV, 19
McCracken, 2000, Robust out-of-sample inference, J. Econometrics, 99, 195, 10.1016/S0304-4076(00)00022-1
McCracken, 2007, Asymptotics for out of sample tests of granger Causality, J. Econometrics, 140, 719, 10.1016/j.jeconom.2006.07.020
Müller, 2014, HAC corrections for strongly autocorrelated time series, J. Bus. Econom. Statist., 32, 311, 10.1080/07350015.2014.931238
Newey, 1987, A simple, positive semidefinite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica, 55, 703, 10.2307/1913610
Noureldin, 2012, Multivariate high-frequency-based volatility (HEAVY) models, J. Appl. Econometrics, 27, 907, 10.1002/jae.1260
Patton, 2011, Volatility forecast comparison using imperfect volatility proxies, J. Econometrics, 160, 246, 10.1016/j.jeconom.2010.03.034
Patton, 2015, Good volatility, bad volatility: Signed jumps and the persistence of volatility, Rev. Econom. Statist., 97, 683, 10.1162/REST_a_00503
Patton, 2010, Generalized forecast errors, a change of measure, and forecast optimality conditions
Politis, 1994, The stationary bootstrap, J. Amer. Statist. Assoc., 1303, 10.1080/01621459.1994.10476870
Renò, 2006, Nonparametric estimation of stochastic volatility models, Econom. Lett., 90, 390, 10.1016/j.econlet.2005.09.009
Romano, 2005, Stepwise multiple testing as formalized data snooping, Econometrica, 73, 1237, 10.1111/j.1468-0262.2005.00615.x
Singleton, 2006
Tauchen, 2011, Realized jumps on financial markets and predicting credit spreads, J. Econometrics, 160, 102, 10.1016/j.jeconom.2010.03.023
Todorov, 2009, Estimation of continuous-time stochastic volatility models with jumps using high-frequency data, J. Econometrics, 148, 131, 10.1016/j.jeconom.2008.10.005
Todorov, 2012, The realized Laplace transform of volatility, Econometrica, 80, 1105, 10.3982/ECTA9133
Todorov, 2011, Realized Laplace transforms for estimation of jump diffusive volatility models, J. Econometrics, 164, 367, 10.1016/j.jeconom.2011.06.016
Vetter, 2010, Limit theorems for bipower variation of semimartingales, Stochastic Process. Appl., 120, 22, 10.1016/j.spa.2009.10.005
West, 1996, Asymptotic inference about predictive ability, Econometrica, 64, 1067, 10.2307/2171956
West, 2006, Forecast evaluation, 10.1016/S1574-0706(05)01003-7
White, 1982, Maximum likelihood estimation of misspecified models, Econometrica, 50, 1, 10.2307/1912526
White, 2000, A reality check for data snooping, Econometrica, 68, 1097, 10.1111/1468-0262.00152
White, 2001
Zhang, 2006, Efficient estimation of stochastic volatility using noisy observations: A multi-scale approach, Bernoulli, 12, 1019, 10.3150/bj/1165269149
Zhang, 2005, A tale of two time scales: Determining integrated volatility with noisy high-frequency data, J. Amer. Statist. Assoc., 100, 1394, 10.1198/016214505000000169