Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials
Tóm tắt
Peripheral arterial disease (PAD) is a common cause of disability and mortality. The reconstruction of blood circulation presents to be the key to treatment, which can be achieved by surgery and interventional therapy. Since 40% patients have lost the chance for the therapy, a new method is needed to reduce the amputation and mortality rate for “no-option” patients. The objective of our systematic review and meta-analysis was to evaluate the efficacy and safety of autologous implantation of stem cells in patients with PAD critically, compared with active controls and placebo. Randomized controlled trials (RCTs) of autologous implantation of stem cells compared with placebo and control for PAD were included. Electronic medical databases including MEDLINE, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), the Chinese Biomedical Literature Database, China National Knowledge Infrastructure (CNKI), and
ClinicalTrials.gov
were searched from initial period to September 2018. Independently, two reviewers screened citations, extracted data, and assessed the risk of bias according to the criteria of the Cochrane handbook. The quality of evidence was evaluated by GRADE evidence profile. The primary outcomes consisted of amputation rate, major amputation rate, ulcer healing rate, and side effects. The second outcomes included ankle-brachial index (ABI), transcutaneous oxygen tension (TcO2), pain-free walking distance (PFWD), and rest pain score. Statistical analysis was conducted via RevMan 5.3 and Stata 12.0. According to the twenty-seven RCTs, 1186 patients and 1280 extremities were included and the majority of studies showed a high risk of bias. Meta-analysis indicated that autologous stem cell therapy was more effective than conventional therapy on the healing rate of ulcers [OR = 4.31 (2.94, 6.30)]. There was also significant improvement in ABI [MD = 0.13 (0.10, 0.17)], TcO2 [MD = 0.13 (0.10, 0.17)], and PFWD [MD = 178.25 (128.18, 228.31)] while significant reduction was showed in amputation rate [OR = 0.50 (0.36, 0.69)] and rest pain scores [MD = − 1.61 (− 2.01, − 1.21)]. But the result presented no significant improvement in major limb salvage [0.66 (0.42, 1.03)]. Besides, stem cell therapy could reduce the amputation rate [OR = 0.50 (0.06, 0.45] and improve the ulcer healing rate [OR = 4.34 (2.96, 6.38] in DM subgroup. Eight trials reported the side effects of autologous stem cell therapy, and no serious side effects related to stem cells were reported. GRADE evidence profile showed all the quality evidence of outcomes were low. Based on the review, autologous stem cell therapy may have a positive effect on “no-option” patients with PAD, but presented no significant improvement in major limb salvage. However, the evidence is insufficient to prove the results due to high risk of bias and low-quality evidence of outcomes. Further researches of larger, randomized, double-blind, placebo-controlled, and multicenter trials are still in demand.
Tài liệu tham khảo
Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999-2000. Circulation. 2004;110(6):738–43.
Zhang X, Ran X, Xu Z, Cheng Z, Shen F, Yu Y, et al. Epidemiological characteristics of lower extremity arterial disease in Chinese diabetes patients at high risk: a prospective, multicenter, cross-sectional study. J Diabetes Complicat. 2018;32(2):150–6.
Leng GC, Lee AJ, Fowkes FG, Whiteman M, Dunbar J, Housley E, et al. Incidence, natural history and cardiovascular events in symptomatic and asymptomatic peripheral arterial disease in the general population. Int J Epidemiol. 1996;25(6):1172–81.
Steg PG, Bhatt DL, Wilson PW, D'Agostino R Sr, Ohman EM, Röther J, et al. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA. 2007;297(11):1197–206.
Heald CL, Fowkes FG, Murray GD, Price JF. Ankle Brachial Index CollaborationRisk of mortality and cardiovascular disease associated with the ankle-brachial index: systematic review. Atherosclerosis. 2006;189(1):61–9.
Steffen LM, Duprez DA, Boucher JL, Ershow AG, Hirsch AT. Management of peripheral arterial disease. Diabetes Spectr. 2008;21(3):171–7.
Feringa HH, van Waning VH, Bax JJ, Elhendy A, Boersma E, Schouten O, et al. Cardioprotective medication is associated with improved survival in patients with peripheral arterial disease. J Am Coll Cardiol. 2006;47(6):1182–7.
Sobel M, Verhaeghe R. Antithrombotic therapy for peripheral artery occlusive disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest. 2008;133(6 Suppl):815S–43S.
Fokkenrood HJ, Bendermacher BL, Lauret GJ, Willigendael EM, Prins MH, Teijink JA. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database Syst Rev. 2013;23(8):CD005263.
Robertson L, Andras A. Prostanoids for intermittent claudication. Cochrane Database Syst Rev. 2013;30(4):CD000986.
Lièvre M, Morand S, Besse B, Fiessinger JN, Boissel JP. Oral Beraprost sodium, a prostaglandin I (2) analogue, for intermittent claudication: a double-blind, randomized, multicenter controlled trial. Circulation. 2000;102(4):426–31.
Thompson PD, Zimet R, Forbes WP, Zhang P. Meta-analysis of results from eight randomized, placebo-controlled trials on the effect of cilostazol on patients with intermittent claudication. Am J Cardiol. 2002;90(12):1314–9.
Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Health Technol Assess. 2010;14(14):1–210 iii-iv.
Frangogiannis NG. Cell therapy for peripheral artery disease. Curr Opin Pharmacol. 2018;39:27–34.
Sprengers RW, Moll FL, Verhaar MC. Stem cell therapy in PAD. Eur J Vasc Endovasc Surg. 2010;39(Suppl 1):S38–43.
Das AK. Stem cell therapy for critical limb ischaemia - a review. Indian J Surg. 2009;71(4):177–81.
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.
Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5(4):434–8.
Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001;104(9):1046–52.
Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000;97(7):3422–7.
Meng J, Yao X, Kang S, Kang S, Yang Y, Zhou C. Treatment of ischemic limbs by transplantation of G-CSF stimulated bone marrow cells in diabetic rabbits. Clin Invest Med. 2010;33(3):E174–80.
Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–35.
Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease: systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res. 2017;120(8):1326–40.
ClinicalTrials.gov. Why should I register and submit results? http://www.clinicaltrials.gov/ct2/manage-recs/background. Accessed 10 Aug 2018.
Online The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions [EB/OL]. [2009-09-01]. http://www.cochrane.org/.htm. Accessed 6 Oct 2018.
Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.
Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28(9):2155–60.
Barć P, Skóra J, Pupka A, Turkiewicz D, Dorobisz AT, Garcarek J, et al. Bone-marrow cells in therapy of critical limb ischaemia of lower extremities-own experience. Acta Angiol. 2006;12(4):155–66.
Arai M, Misao Y, Nagai H, Kawasaki M, Nagashima K, Suzuki K, et al. Granulocyte colony-stimulating factor: a noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease. Circ J. 2006;70(9):1093–8.
Zhang Z, Liu W, Zhao X. Transplantation of autologous bone marrow stem cell for diabetic foot ulcer. Pract Clin Med. 2007;8(8):58–60.
Lu D, Jiang Y, Liang Z, Li X, Zhang Z, Chen B. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia. J Med Coll PLA. 2008;23(2):106–15.
Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res. 2009;12(5):359–66.
Chen B, Lu D, Liang Z, Jiang Y, Wang F, Wu Q, et al. Autologous bone marrow mesenchymal stem cell transplantation for treatment of diabetic foot following amplification in vitro. Chin J Tissue Eng Res. 2009;13(32):6227–30.
Gan Y, Li T, Yu L, Zheng C, Dong L, Jin R, et al. Curative effect of the combination of autologous bone marrow stem cell transplantation and Tongmai Huayu soup on diabetic foot. Chin J Dermatovenereol Integrated Tradit Western Med. 2009;8(1):5–7.
Shi J, Yan Z, Hu X, Cao L, Zhang X, Ma X. Clinical study of autologous bone marrow hematopoietic stem cell transplantation for treatment of diabetic lower limb vascular lesions. Chin J Postgraduates Med. 2009;32(34):50–2.
Procházka V, Gumulec J, Jalůvka F, Salounová D, Jonszta T, Czerný D, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19(11):1413–24.
Wen J, Huang P. Autologous peripheral blood mononuclear cells transplantation in treatment of 30 cases of critical limb ischemia: 3-year safety follow-up. J Clin Rehabil Tissue Eng Res. 2010;14(45):8526–30.
Walter DH, Krankenberg H, Balzer JO, Kalka C, Baumgartner I, Schlüter M, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4(1):26–37.
Iafrati MD, Hallett JW, Geils G, Pearl G, Lumsden A, Peden E, et al. Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia. J Vasc Surg. 2011;54(6):1650–8.
Benoit E, O'Donnell TF Jr, Iafrati MD, Asher E, Bandyk DF, Hallett JW, et al. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J Transl Med. 2011;9:165.
Powell RJ, Comerota AJ, Berceli SA, Guzman R, Henry TD, Tzeng E, et al. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg. 2011;52(4):1032–41.
Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the 25 randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther. 2012;20(6):1280–6.
Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36.
Guan W, Gan Y, Li T, Yu L, Zheng C, Jia P, et al. Curative effect of autologous bone marrow stem cell transplantation on diabetic foot and its relation with serum level of basic fibroblast growth factor. Chin J Dermatovenereol Integrated Tradit Western Med. 2011;10(2):90–2.
Jain P, Perakath B, Jesudason MR, Nayak S. The effect of autologous bone marrow-derived cells on healing chronic lower extremity wounds: results of a randomized controlled study. Ostomy Wound Management. 2011;57(7):38–44.
Ozturk A, Kucukardali Y, Tangi F, Erikci A, Uzun G, Bashekim C, et al. Therapeutical potential of autologous peripheral blood mononuclear cell transplantation in patients with type 2 diabetic critical limb ischemia. J Diabetes Complicat. 2012;26(1):29–33.
Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, et al. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv. 2012;5(6):821–30.
Li M, Zhou H, Jin X, Wang M, Zhang S, Xu L. Autologous bone marrow mononuclear cells transplant in patients with critical leg ischemia: preliminary clinical results. Exp Clin Transplant. 2013;11(5):435–9.
Szabo GV, Kovesd Z, Cserepes J, Daroczy J, Belkin M, Acsady G. Peripheral blood-derived autologous stem cell therapy for the treatment of patients with late-stage peripheral artery disease-results of the short- and long-term follow-up. Cytotherapy. 2013;15(10):1245–52.
Mohammadzadeh L, Samedanifard SH, Keshavarzi A, Alimoghaddam K, Larijani B, Ghavamzadeh A, et al. Therapeutic outcomes of transplanting autologous granulocyte colony-stimulating factor-mobilised peripheral mononuclear cells in diabetic patients with critical limb ischaemia. Exp Clin Endocrinol Diabetes. 2013;121(1):48–53.
Raval AN, Schmuck EG, Tefera G, Leitzke C, Ark CV, Hei D, et al. Bilateral administration of autologous CD133+ cells in ambulatory patients with refractory critical limb ischemia: lessons learned from a pilot randomized, double-blind, placebo-controlled trial. Cytotherapy. 2014;16(12):1720–32.
Teraa M, Sprengers RW, Schutgens RE, Slaper-Cortenbach IC, van der Graaf Y, Algra A, et al. Effect of repetitive intraarterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation. 2015;131(10):851–60.
Skóra J, Pupka A, Janczak D, Barć P, Dawiskiba T, Korta K, et al. Combined autologous bone marrow mononuclear cell and gene therapy as the last resort for patients with critical limb ischemia. Arch Med Sci. 2015;11(2):325–31.
Lu A, Zhao J, Zhang S, Li D, Zhang L, Nan J. The clinical observation of 20 cases of diabetic vascular lesion of lower limbs treated with autologous peripheral blood stem cell transplant after bone marrow mobilization. Inner Mongolia Med J. 2016;48(4):402–4.
Gupta PK, Chullikana A, Parakh R, Desai S, Das A, Gottipamula S, et al. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med. 2013;10:143.
Horie T, Onodera R, Akamastu M, Ichikawa Y, Hoshino J, Kaneko E, et al. Long-term clinical outcomes for patients with lower limb ischemia implanted with G-CSF-mobilized autologous peripheral blood mononuclear cells. Atherosclerosis. 2010;208(2):461–6.