Narrative-based computational modelling of the Gp130/JAK/STAT signalling pathway
Tóm tắt
Appropriately formulated quantitative computational models can support researchers in understanding the dynamic behaviour of biological pathways and support hypothesis formulation and selection by "in silico" experimentation. An obstacle to widespread adoption of this approach is the requirement to formulate a biological pathway as machine executable computer code. We have recently proposed a novel, biologically intuitive, narrative-style modelling language for biologists to formulate the pathway which is then automatically translated into an executable format and is, thus, usable for analysis via existing simulation techniques. Here we use a high-level narrative language in designing a computational model of the gp130/JAK/STAT signalling pathway and show that the model reproduces the dynamic behaviour of the pathway derived by biological observation. We then "experiment" on the model by simulation and sensitivity analysis to define those parameters which dominate the dynamic behaviour of the pathway. The model predicts that nuclear compartmentalisation and phosphorylation status of STAT are key determinants of the pathway and that alternative mechanisms of signal attenuation exert their influence on different timescales. The described narrative model of the gp130/JAK/STAT pathway represents an interesting case study showing how, by using this approach, researchers can model biological systems without explicitly dealing with formal notations and mathematical expressions (typically used for biochemical modelling), nevertheless being able to obtain simulation and analysis results. We present the model and the sensitivity analysis results we have obtained, that allow us to identify the parameters which are most sensitive to perturbations. The results, which are shown to be in agreement with existing mathematical models of the gp130/JAK/STAT pathway, serve us as a form of validation of the model and of the approach itself.
Tài liệu tham khảo
Regev A, Shapiro E: Cells as Computation. Nature. 2002, 419: 343-
Fisher J, Henzinger TA: Executable cell biology. Nat Biotechnol. 2007, 25 (11): 1239-49.
Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O: Probabilistic model checking of complex biological pathways. Theoretical Computer Science. 2007, 391: 239-257.
Priami C, Quaglia P: Operational patterns in Beta-binders. Transactions on Computational Systems Biology. 2004, 1: 50-65.
Priami C, Regev A, Silverman W, Shapiro E: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters. 2001, 80: 25-31.
Regev A, Panina EM, Silverman W, Cardelli L, Shapiro EY: BioAmbients: an Abstraction for Biological Compartments. Theoretical Computer Science. 2004, 325 (1): 141-167.
Calder M, Gilmore S, Hillston J: Modelling the Influence of RKIP on the ERK Signalling Pathway Using the Stochastic Process Algebra PEPA. Transactions on Computational Systems Biology. 2006, 7: 1-23.
Kwiatkowska M, Norman G, Parker D, Tymchyshyn O, Heath J, Gaffney E: Simulation and verification for computational modelling of signalling pathways. Proceedings of Winter Simulation Conference (WSC'06). 2006, 1666-1675.
Guerriero ML, Prandi D, Priami C, Quaglia P: Process Calculi Abstractions for Biology. Algorithmic Bioprocesses. 2009
Guerriero ML, Heath J, Priami C: An Automated Translation from a Narrative Language for Biological Modelling into Process Algebra. Proceedings of Computational Methods in Systems Biology (CMSB'07). 2007, 4695: 136-151. LNCS
Dematté L, Priami C, Romanel A: The BlenX Language: A Tutorial. Formal Methods for Computational Systems Biology (SFM'08). 2008, 5016: 313-365. LNCS
Heinrich P, Behrmann I, Haan S, Hermanns H, Müller-Newen G, Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003, 374: 1-20.
Underhill-Day N, Heath J: Oncostatin M (OSM) Cytostasis of Breast Tumor Cells: Characterization of an OSM Receptor β-Specific Kernel. Cancer Research. 2006, 66: 10891-10901.
Bravo J, Heath JK: Receptor recognition by gp130 cytokines. EMBO J. 2000, 19 (11): 2399-411.
Reich NC, Liu L: Tracking STAT nuclear traffic. Nat Rev Immunol. 2006, 6 (8): 602-12.
Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, Matsuda T: The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun. 2002, 297 (4): 811-817.
Alexander WS, Hilton DJ: The role of suppressors of cytokine signalling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol. 2004, 22: 503-29.
Sharrocks AD: PIAS proteins and transcriptional regulation – more than just SUMO E3 ligases?. Genes Dev. 2006, 20 (7): 754-8.
Rakesh K, Agrawal DK: Controlling cytokine signaling by constitutive inhibitors. Biochem Pharmacol. 2005, 70 (5): 649-57.
Klampfer L: The role of signal transducers and activators of transcription in colon cancer. Front Biosci. 2008, 13: 2888-99.
Verma A, Kambhampati S, Parmar S, Platanias LC: Jak family of kinases in cancer. Cancer Metastasis Rev. 2003, 22 (4): 423-34.
Swameye I, Müller T, Timmer J, Sandra O, Klingmüller U: Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. PNAS. 2003, 100: 1028-1033.
Mahdavi A, Davey RE, Bhola P, Yin T, Zandstra PW: Sensitivity Analysis of Intracellular Signaling Pathway Kinetics Predicts Targets for Stem Cell Fate Control. PLoS Comput Biol. 2007, 3 (7): 1257-1267.
Singh A, Jayaraman A, Hahn J: Modeling Regulatory Mechanisms in IL-6 Transduction in Hepatocytes. Biotechnol Bioeng. 2006, 95 (5): 850-862.
Dematté L, Priami C, Romanel A: The Beta Workbench: a computational tool to study the dynamics of biological systems. Briefings in Bioinformatics. 2008, 9 (5): 437-449. http://www.cosbi.eu/Rpty_Soft_BetaWB.php
Gillespie D: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry. 1977, 81: 2340-2361.
Guerriero ML: From Intuitive Descriptions of Biochemical Systems to Their Formal Analysis. PhD Thesis. 2007, DIT – University of Trento
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular biology of the cell. 2002, New York: Garland Science, 4
N2BB Home Page. http://homepages.inf.ed.ac.uk/mguerrie/sw/N2BB/
Snazer Home Page. http://www.cosbi.eu/Rpty_Soft_Snazer.php
Rasband WS: ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA,http://rsb.info.nih.gov/ij/
ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai Ke: Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 2002, 22 (16): 5662-8.
Herrmann A, Vogt M, Mönnigmann M, Clahsen T, Sommer U, Haan S, Poli V, Heinrich PC, Müller-Newen G: Nucleocytoplasmic shuttling of persistently activated STAT3. J Cell Sci. 2007, 120 (Pt 18): 3249-61.
Bhattacharya S, Schindler C: Regulation of Stat3 nuclear export. J Clin Invest. 2003, 111 (4): 553-9.
Lödige I, Marg A, Wiesner B, Malecová B, Oelgeschläger T, Vinkemeier U: Nuclear export determines the cytokine sensitivity of STAT transcription factors. J Biol Chem. 2005, 280 (52): 43087-99.
NCI-Nature Pathway Interaction Database.http://pid.nci.nih.gov
Ciocchetta F, Hillston J: Bio-PEPA: a Framework for the Modelling and Analysis of Biochemical Networks. Theoretical Computer Science. 2009