Hydrodynamic effects on cells in agitated tissue culture reactors

Bioprocess and Biosystems Engineering - Tập 1 - Trang 29-41 - 1986
R. S. Cherry1, E. T. Papoutsakis1
1Department of Chemical Engineering, Rice University, Houston, USA

Tóm tắt

Tissue cells are known to be sensitive to mechanical stresses imposed on them by agitation in bioreactors. The amount of agitation provided in a microcarrier or suspension bioreactor should be only enough to provide an effective homogeneity. Three distinct flow regions can be identified in the reactor: bulk turbulent flow, bulk laminar flow, and boundary-layer flows. Possible mechanisms of cell damage are examined by analyzing the motion of microcarriers or free cells relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. The primary mechanisms of cell damage appear to result from (a) direct interaction between microcarriers and turbulent eddies, (b) collisions between microcarriers in turbulent flow, and (c) collisions against the impeller or other stationary surfaces. If the smallest eddies of turbulent flow are of the same size as the microcarrier beads, they may cause high shear stresses on the cells. Eddies the size of the average interbead spacing may cause bead-bead collisions which damage cells. The severity of the collisions increases when the eddies are also of the same size as the beads. Bead size and the interbead distance are virtually equal in typical microcarrier suspensions. Impeller collisions occur when the beads cannot avoid the impeller leading edge as it advances through the liquid. The implications of the results of this analysis on the design and operation of tissue culture bioreactors are also discussed.

Tài liệu tham khảo

Glacken, M. W.; Fleischaker, R. J.; Sinskey, A. J.: Mammalian cell culture: Engineering principles and scale-up. Trends Biotech. 1 (1983) 102–108 Feder, J.; Tolbert, W. R.: The large scale culture of mammalian cells. Sci. Am. 248 (1983) 36–43 Margaritis, A.; Wallace, J. B.: Novel bioreactor systems and their applications. Biotechnol. 2 (1984) 447–453 Midier, M., Jr.; Finn, R. K.: A model system for evaluating shear in the design of stirred fermentors. Biotechnol. Bioeng. 8 (1966) 71–84 Hirtenstein, M.; Clark, J.: In: Richards, R.; Rajan, K. (Eds.): Tissue culture in medical research. Oxford: Pergamon Press (1980) Sinskey, A. J.; Fleischaker, R. J.; Tyo, M. A.; Giard, D. J.; Wang, D. I. C.: Production of cell-derived products: Virus and interferon. Ann. NY Acad. Sci. 369 (1981) 47–59 Croughan, M. S.; Wang, D. I. C.; Hamel, J.-F.: Fluid shear effects on animal cells grown in microcarrier cultures. Presented at AIChE National Meeting, Chicago, November 1985 Stathopoulos, N. A.; Hellums, J. D.: Shear stress effects on human embryonic kidney cells in vitro. Biotechnol. Bioeng. 27 (1985) 1021–1026 Frangos, J. A.; Eskin, S. G.; McIntire, L. V.; Ives, C. L.: Flow effects on prostacyclin production by cultured human endothelial cells. Sci. 227 (1985) 1477–1479 Fleischaker, R. J., Jr.; Sinskey, A. J.: Oxygen demand and supply in cell culture. Eur. J. Appl. Microbiol. 12 (1981) 193–197 Bird, R. B.; Stewart, W. E.; Lightfoot, E. N.: Transport phenomena, pp. 56–60. NY: Wiley & Sons 1960 Cooney, C. L.; Koplov, H. M.; Haggstrom, M.: Transient phenomena in continuous culture. In: Calcott, P. H. (Ed.): Continuous culture of cells. Florida: CRC Press, Boca Raton 1981 Harrison, D. E. F.; Topiwala, H. H.: Transient and oscillatory states of continuous culture. Adv. Biochem. Eng. 3 (1974) 67–220 Hansford, G. S.; Humphrey, A. E.: Effect of equipment scale and degree of mixing on continuous fermentation yield at low dilution rates. Biotechnol. Bioeng. 8 (1966) 85–96 Kolmogorov, D. N.; C. R. (Doklady) Acad. Sci. U.S.S.R., N.S. 30 (1941) 301–305 Hinze, J. O.: Turbulent fluid and particle interaction. Prog. Heat Mass Transfer 6 (1971) 433–452 Friedlander, S. K.: Behavior of suspended particles in a turbulent fluid. AIChE J. 3 (1957) 381–385 Panchev, S.: Random functions and turbulence, pp. 144–152. New York: Pergamon Press 1971 Nagata, S.: Mixing — principles and applications, pp. 138–164. New York: Halsted Press 1975 Giard, D. J.; Loeb, D. H.; Thilly, W. G.; Wang, D. I. C.; Levine, D. W.: Human interferon production with diploid fibroblast cells grown on microcarriers. Biotechnol. Bioeng. 21 (1979) 433–442 Soo, S. L.: Fluid dynamics of multiphase systems, p. 263. Mass.: Blaisdell Publ. Co., Waltham 1967 Lee, S. L.; Durst, F.: On the motion of particles in turbulent duct flows. Int. J. Multiphase Flow 8 (1982) 125–146 Microcarrier cell culture — principles and methods. Uppsala, Sweden: Pharmacia Fine Chemicals AB 1981 Einav, S.; Lee, S. L.: Particles migration in laminar boundary layer flow. Int. J. Multiphase Flow 1 (1973) 73–88 Nagata, S., op. cit. p. 36 Perry, R. H.; Chilton, C. H. (Eds.): Chemical engineers' handbook, 5th ed., p. 3–247. New York: McGraw-Hill 1973 Sather, N. F.; Lee, K. J.: Viscosity of concentrated suspensions of spheres. Prog. Heat Mass Trans. 6 (1972) 575–589 Placek, J.; Tavlarides, L. L.: Turbulent flow in stirred tanks. Part I: Turbulent flow in the impeller region. AIChE J. 31 (1985) 1113–1120 Schlichting, H.: Boundary layer theory, 7th ed., pp. 636–640. New York: McGraw-Hill 1979 Ibid pp. 695–696 Ibid pp. 135–144 Brenner, H.: Particles in low Reynolds number flows. Prog. Heat Mass Transfer 6 (1971) 509–574 Saffman, P. G.: The lift on a small sphere in slow shear flow. J. Fluid Mech. 22 (1965) 385–400 Immich, H.: Impulsive motion of a suspension: Effect of antisymmetric stresses and particle rotation. Int. J. Multiphase Flow 6 (1980) 441–471 Cox, R. G.; Zia, I. Y. Z.; Mason, S. G.: Particle motions in sheared suspensions: XXV. Streamline around cylinders and spheres. J. Colloid Interface Sci. 27 (1968) 7–18 Adamczyk, Z.; van de Ven, T. G. M.: Pathlines around freely rotating spheroids in simple shear flow. Int. J. Multiphase Flow 9 (1983) 203–217 Goldman, A. J.; Cox, R. G.; Brenner, H.: Slow viscous motion of a sphere parallel to a plane wall-II. Couette flow. Chem. Eng. Sci. 22 (1967) 653–660 Eichhorn, R.; Small, S.: Experiments on the lift and drag of spheres suspended in a Poiseuille flow. J. Fluid Mech. 20 (1964) 513–527 Spielman, L. A.: Particle capture from low-speed laminar flows. Ann. Rev. Fluid Mech. 9 (1977) 297–319 Davies, C. N.: Air filtration, chap. 3. New York: Academic Press 1973 Schlichting, H., op. cit. p. 39 Bird, R. B. et al., op. cit. p. 136 Schlichting, H., op. cit., p. 97–98 Nagata, S., op. cit., p. 10 Mizrahi, A.: Oxygen in human lymphoblastoid cell line cultures and effect of polymers in agitated and aerated cultures. Dev. Biol. Stds. 55 (1984) 93–102 De Bruyne, N. A.: A high efficiency stirrer for suspension cell culture with or without microcarriers. Adv. Exp. Med. Biol. 172 (1984) 139–149