Impact of the blooming artefact on dental implant dimensions in 13 cone-beam computed tomography devices
Tóm tắt
The purpose of this study was to objectively assess dimensional alteration (blooming artefact) on dental implant using 13 cone-beam computed tomography (CBCT) devices adjusted to device-specific scanning protocols and to assess whether subjective adjustment of brightness and contrast (B&C) could alter its visualization. An anthropomorphic phantom containing a dental implant was scanned in 13 CBCT devices adjusted to three scanning protocols: medium-FOV standard resolution, small-FOV standard resolution, and small-FOV high resolution. The diameter of the implant was measured at five levels, averaged, and compared with those from a reference standard industrial CT image. B&C adjustments were performed and measurements were repeated. The intraclass correlation coefficient assessed the reliability of the measurements and general linear mixed models were applied for multiples comparisons at a 95% confidence interval. Implant diameter obtained from small-FOV high-resolution protocols in most CBCT devices was not significantly different when compared to that from the reference (p > 0.05). For standard protocols, significant dimensional alteration of the implant ranging from 23 to 34% (0.67 to 1.02 mm) was observed in 9 CBCT devices for small-FOV scanning (p < 0.05), and in 8 CBCT devices for medium-FOV scanning, implant dimensional alteration ranged significantly from 21 to 35% (0.62 to 1.04 mm). After B&C adjustments, dimensional alteration was reduced for several of the CBCT devices tested (p < 0.05). The visualization of the implant dimensional alteration differed between CBCT devices and scanning protocols with an increase in diameter ranging from 0.27 to 1.04 mm. For most CBCT devices, B&C adjustments allowed to reduce visualization of implant blooming.
Tài liệu tham khảo
Gaêta-Araujo H, Leite AF, Vasconcelos KF, Jacobs R. Two decades of research on CBCT imaging in DMFR - an appraisal of scientific evidence. Dentomaxillofac Radiol. 2021;50:20200367. https://doi.org/10.1259/dmfr.20200367.
Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, et al. Quantification of metal artefacts on cone beam computed tomography images. Clin Oral Implants Res. 2013;24:94–9. https://doi.org/10.1111/j.1600-0501.2011.02382.x.
Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40(5):265–73. https://doi.org/10.1259/dmfr/30642039.
Vasconcelos KF, Nicolielo LF, Nascimento MC, Haiter-Neto F, Bóscolo FN, Van Dessel J, et al. Artefact expression associated with several cone-beam computed tomographic machines when imaging root filled teeth. Int Endod J. 2015;48(10):994–1000. https://doi.org/10.1111/iej.12395.
Codari M, de Faria VK, Ferreira Pinheiro Nicolielo L, Haiter Neto F, Jacobs R. Quantitative evaluation of metal artefacts using different CBCT devices, high-density materials and field of views. Clin Oral Implants Res. 2017;28(12):1509–14. https://doi.org/10.1111/clr.13019.
Celikten B, Jacobs R, de Faria VK, Huang Y, Shaheen E, Nicolielo LFP, et al. Comparative evaluation of cone beam CT and micro-CT on blooming artefacts in human teeth filled with bioceramic sealers. Clin Oral Investig. 2019;23(8):3267–73. https://doi.org/10.1007/s00784-018-2748-8.
Hoffmann U, Ferencik M, Cury RC, Pena AJ. Coronary CT angiography. J Nucl Med. 2006;47(5):797–806.
Gaêta-Araujo H, Alzoubi T, Vasconcelos KF, Orhan K, Pauwels R, Casselman JW, et al. Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofac Radiol. 2020;15:20200145. https://doi.org/10.1259/dmfr.20200145.
Do S, Karl WC, Liang Z, Kalra M, Brady TJ, Pien HH. A decomposition-based CT reconstruction formulation for reducing blooming artefacts. Phys Med Biol. 2011;56(22):7109–25. https://doi.org/10.1088/0031-9155/56/22/008.
Pauwels R, Jacobs R, Bosmans H, Pittayapat P, Kosalagood P, Silkosessak O, et al. Automated implant segmentation in cone-beam CT using edge detection and particle counting. Int J Comput Assist Radiol Surg. 2014;9(4):733–43. https://doi.org/10.1007/s11548-013-0946-z.
Carneiro VC, Siqueira CA, Valentim FB, Oliveira AL, Oliveira ML, Azeredo RA, et al. Accuracy of three cone beam computed tomography systems in the detection of implant-abutment misfit. Int J Prosthodont. 2019;32(2):198–200. https://doi.org/10.11607/ijp.6127.
Coelho-Silva F, Martins LAC, Braga DA, Zandonade E, Haiter-Neto F, de Azevedo-Vaz SL. Influence of windowing and metal artefact reduction algorithms on the volumetric dimensions of five different high-density materials: a cone-beam CT study. Dentomaxillofac Radiol. 2020;25:20200039. https://doi.org/10.1259/dmfr.20200039
World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organization. 2001;79:373–4.
Jones DEA, Raine HC. Correspondence. Br J Radiol. 1949;22(261):549–50. https://doi.org/10.1259/0007-1285-22-261-549-b.
Oenning AC, Pauwels R, Stratis A, De Faria VK, Tijskens E, De Grauwe A, et al. Halve the dose while maintaining image quality in paediatric cone beam CT. Sci Rep. 2019;9(1):5521. https://doi.org/10.1038/s41598-019-41949-w.
Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging. 1997;16(2):187–98. https://doi.org/10.1109/42.563664.
Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol. 2015;44(1):20140238. https://doi.org/10.1259/dmfr.20140238.
Candemil AP, Salmon B, Freitas DQ, Ambrosano GM, Haiter-Neto F, Oliveira ML. Metallic materials in the exomass impair cone beam CT voxel values. Dentomaxillofac Radiol. 2018;47(6):20180011. https://doi.org/10.1259/dmfr.20180011.
de Azevedo-Vaz SL, de Faria Vasconcelos K, Neves FS, Melo SL, Campos PS, Haiter-Neto F. Detection of periimplant fenestration and dehiscence with the use of two scan modes and the smallest voxel sizes of a cone-beam computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:121–7. https://doi.org/10.1016/j.oooo.2012.10.003
de Azevedo-Vaz SL, Alencar PN, Rovaris K, Campos PS, Haiter-Neto F. Enhancement cone beam computed tomography filters improve in vitro periimplant dehiscence detection. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116:633–9. https://doi.org/10.1016/j.oooo.2013.06.029
de Azevedo-Vaz SL, Peyneau PD, Ramirez-Sotelo LR, Vasconcelos Kde F, Campos PS, Haiter-Neto F. Efficacy of a cone beam computed tomography metal artefact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:550–6. https://doi.org/10.1016/j.oooo.2016.01.013.
Vanderstuyft T, Tarce M, Sanaan B, Jacobs R, de Faria Vasconcelos K, Quirynen M. Inaccuracy of buccal bone thickness estimation on cone-beam CT due to implant blooming: An ex-vivo study. J Clin Periodontol. 2019;46(11):1134–43. https://doi.org/10.1111/jcpe.13183.
Peterson AG, Wang M, Gonzalez S, Covell DA Jr, Katancik J, Sehgal HS. An in vivo and cone beam computed tomography investigation of the accuracy in measuring alveolar bone height and detecting dehiscence and fenestration defects. Int J Oral Maxillofac Implants. 2018;33(6):1296–304. https://doi.org/10.11607/jomi.6633.