RNA binding protein Nova1 promotes tumor growth in vivo and its potential mechanism as an oncogene may due to its interaction with GABAA Receptor-γ2

Journal of Biomedical Science - Tập 23 - Trang 1-9 - 2016
Yi-An Zhang1, Hai-Ning Liu2, Ji-Min Zhu2, Dan-Ying Zhang2, Xi-Zhong Shen2,3, Tao-Tao Liu2
1Department of Hematology, Zhongshan Hospital of Fudan University, Shanghai, China
2Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
3Key Laboratory of Medical Molecule Virology, Ministry of Education and Health, Shanghai Institute of Liver Diseases, Shanghai, China

Tóm tắt

The mechanism of Nova1’s role in hepatocellular carcinoma has not been delineated. Also its interaction with GABAA receptor γ2 in HCC is unveiled. This study is aimed to make it clear the distribution, prognostic value of GABAARγ2 in human hepatocellular carcinoma. And its role in HCC tumorigenesis under the regulation of its alternative splicing factor Nova1. Immunohistochemistry staining was used to investigate the distribution and clinical significance of GABAARγ2 protein expression in hepatocellular carcinoma. In vivo tumorigenticity test was conducted in nude mice by regulation the expression of Nova1. Later, western blot and co-immunoprecipitation were carried out to verify the interaction between Nova1 and GABAARγ2 in HCC tissue. Immunohistochemical staining showed GABAARγ2 expression in HCC. Survival analysis showed intratumoral GABAARγ2 was an independent prognostic factor for overall survival (OS) and disease free survival (DFS). Up-regulation of Nova1 expression promotes subcutaneous HCC growth in nude mice and western blot showed the ectopic expression of Nova-1 restro-regulates the expression of GABAARγ2 and GABA. Protein level interaction of GABAARγ2 and Nova-1 was evidenced by co-immunoprecipitation. Nova1 interacts with GABAARγ2 not only in CNS but also in HCC. Nova1’s potential mechanism as an oncogene may due to its interaction with GABAA Rγ2. A better understanding of the mechanism of Nova1 for HCC progression provides a novel target for an optimal immunotherapy against this fatal malignancy.

Tài liệu tham khảo

Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma[J]. CA Cancer J Clin. 2012;62(6):394–9. Jeng YM, Chang CC, Hu FC, Chou HY, Kao HL, Wang TH, Hsu HC. RNA-binding protein insulin-like growth factor II mRNA-binding protein 3 expression promotes tumor invasion and predicts early recurrence and poor prognosis in hepatocellular carcinoma[J]. Hepatology. 2008;48(4):1118–27. Iida M, Iizuka N, Tsunedomi R, Tsutsui M, Yoshida S, Maeda Y, Tokuhisa Y, Sakamoto K, Yoshimura K, Tamesa T, Oka M. Overexpression of the RD RNA binding protein in hepatitis C virus-related hepatocellular carcinoma[J]. Oncol Rep. 2012;28(2):728–34. Qian HL, Chen SH, Peng XX. Significance of a novel fetal RNA-binding protein p62 expression in hepatocellular carcinoma][J]. Zhonghua Bing Li Xue Za Zhi. 2003;32(4):329–32. Buckanovich RJ, Posner JB, Darnell RB. Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system[J]. Neuron. 1993;11(4):657–72. Zhang YA, Zhu JM, Yin J, Tang WQ, Guo YM, Shen XZ, Liu TT. High expression of neuro-oncological ventral antigen 1 correlates with poor prognosis in hepatocellular carcinoma[J]. PLoS One. 2014;9(3):e90955. Dredge BK, Darnell RB. Nova regulates GABA(A) receptor gamma2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer[J]. Mol Cell Biol. 2003;23(13):4687–700. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs[J]. Int Rev Cytol. 2002;213:1–47. Minuk GY, Zhang M, Gong Y, Minuk L, Dienes H, Pettigrew N, Kew M, Lipschitz J, Sun D. Decreased hepatocyte membrane potential differences and GABAA-beta3 expression in human hepatocellular carcinoma[J]. Hepatology. 2007;45(3):735–45. Liu Y, Li YH, Guo FJ, Wang JJ, Sun RL, Hu JY, Li GC. Gamma-aminobutyric acid promotes human hepatocellular carcinoma growth through overexpressed gamma-aminobutyric acid A receptor alpha 3 subunit[J]. World J Gastroenterol. 2008;14(47):7175–82. Wang T, Huang W, Chen F. Baclofen, a GABAB receptor agonist, inhibits human hepatocellular carcinoma cell growth in vitro and in vivo[J]. Life Sci. 2008;82(9–10):536–41. Richter L, de Graaf C, Sieghart W, Varagic Z, Morzinger M, de Esch IJ, Ecker GF, Ernst M. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands[J]. Nat Chem Biol. 2012;8(5):455–64. Johnston GA. GABAA receptor pharmacology[J]. Pharmacol Ther. 1996;69(3):173–98. Campagna-Slater V, Weaver DF. Molecular modelling of the GABAA ion channel protein[J]. J Mol Graph Model. 2007;25(5):721–30. Khandheria BK, Seward JB, Oh JK, Freeman WK, Nichols BA, Sinak LJ, Miller FJ, Tajik AJ. Value and limitations of transesophageal echocardiography in assessment of mitral valve prostheses[J]. Circulation. 1991;83(6):1956–68. Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology[J]. Neuropharmacology. 2009;56(1):141–8. Maemura K, Shiraishi N, Sakagami K, Kawakami K, Inoue T, Murano M, Watanabe M, Otsuki Y. Proliferative effects of gamma-aminobutyric acid on the gastric cancer cell line are associated with extracellular signal-regulated kinase 1/2 activation[J]. J Gastroenterol Hepatol. 2009;24(4):688–96. Sun D, Gong Y, Kojima H, Wang G, Ravinsky E, Zhang M, Minuk GY. Increasing cell membrane potential and GABAergic activity inhibits malignant hepatocyte growth[J]. Am J Physiol Gastrointest Liver Physiol. 2003;285(1):G12–9. Erlitzki R, Gong Y, Zhang M, Minuk G. Identification of gamma-aminobutyric acid receptor subunit types in human and rat liver[J]. Am J Physiol Gastrointest Liver Physiol. 2000;279(4):G733–9. Buckanovich RJ, Yang YY, Darnell RB. The onconeural antigen Nova-1 is a neuron-specific RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies[J]. J Neurosci. 1996;16(3):1114–22. Teplova M, Malinina L, Darnell JC, Song J, Lu M, Abagyan R, Musunuru K, Teplov A, Burley SK, Darnell RB, Patel DJ. Protein-RNA and protein-protein recognition by dual KH1/2 domains of the neuronal splicing factor Nova-1[J]. Structure. 2011;19(7):930–44.