High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gordon, D.J. & Rifkind, B.M. High-density lipoprotein–the clinical implications of recent studies. N. Engl. J. Med. 321, 1311–1316 (1989).
Krieger, M. The “best” of cholesterols, the “worst” of cholesterols: A tale of two receptors. Proc. Soc. Exp. Biol. Med. 95, 4077–4080 (1998).
Harrison, D.G. Endothelial dysfunction in atherosclerosis. Basic Res. Cardiol. 89, 87–102 (1994).
Cohen, R.A. The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog. Cardiovasc. Dis. 38, 105–128 (1995).
Lefer, A.M. & Ma, X.L. Decreased basal nitric oxide release in hypercholesterolemia increases neutrophil adherence to rabbit coronary artery endothelium. Arterioscler. Thromb. 13, 771–776 (1993).
Cayatte, A.J., Palacino, J.J., Horten, K. & Cohen, R.A. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler. Thromb. 14, 753–759 (1994).
Ignarro, L.J., Cirino, G., Casini, A. & Napoli, C. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol. 34, 879–886 (1999).
Shaul, P.W. & Anderson, R.G.W. Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. Lung Cell. Mol. Physiol. 275, L843–L851 (1998).
Zannis, V. I., Kardassis, D & Zannis, E.E. Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. in Advances in Human Genetics (eds. Harris, H. & Hirschhorn, K.) 145–319 (Plenum, New York, 1993).
Kingsley, D.M. & Krieger, M. Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface-receptor activity. Proc. Natl. Acad. Sci. USA 81, 5454–5458 (1984).
Stangl, H., Cao, G., Wyne, K.W. & Hobbs, H.H. Scavenger receptor, class B, type I-dependent stimulation of cholesterol esterification by high density lipoproteins, low density lipoproteins, and nonlipoprotein cholesterol. J. Biol. Chem. 273, 31002–31008 (1998).
Babitt, J. et al. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J. Biol. Chem. 272, 13242–13249 (1997).
Uittenbogaard, A. et al. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric oxide synthase localization and activation in caveolae. J. Biol. Chem. 275, 11278–11283 (2000).
Chambliss, K.L. et al. ER–α and eNOS are organized into a functional signaling module in caveolae. Circ. Res. 87, E44–E52 (2000).
Liadaki, K.N. et al. Binding of high density lipoprotein (HDL) and discoidal reconstituted HDL to the HDL receptor scavenger receptor class B type I. J. Biol. Chem. 275, 21262–21271 (2000).
Rigotti, A. et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc. Natl. Acad. Sci. USA 94, 12610–12615 (1997).
Fidge, N.H. High density lipoprotein receptors, binding proteins, and ligands. J. Lipid Res. 40, 187–201 (1999).
Trigatti, B. et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc. Natl. Acad. Sci. USA 96, 9322–9327 (1999).
Jolley, C.D., Woollett, L.A., Turley, S.D. & Dietschy, J.M. Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoproteinor apolipoprotein A-I concentration. J. Lipid Res. 39, 2143–2149 (1998).
Xia, P., Vadas, M.A., Rye, K.-A., Barter, P.J. & Gamble, J.R. High density lipoproteins interrupt the sphingosine kinase pathway. J. Biol. Chem. 274, 33143–33147 (1999).
Acton, S. et al. Identification of scavenger receptor SR-BI as high density lipoprotein receptor. Science 271, 518–520 (1996).
Stangl, H., Hyatt, M. & Hobbs, H.H. Transport of lipids from high and low density lipoproteins via scavenger receptor-BI. J. Biol. Chem. 274, 32692–32698 (1999).
Swarnakar, S., Temel, R.E., Connelly, M.A., Azhar, S. & Williams, D.L. Scavenger receptor class B, type I, mediates selective uptake of low density lipoprotein cholesteryl ester. J. Biol. Chem. 274, 29733–29739 (1999).
Kellner-Weibel, G. et al. Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution. Biochemistry 39, 221–229 (2000).
Reaven, E., Leers-Sucheta, S., Nomoto, A. & Azhar, S. Expression of scavenger receptor class B type 1 promotes microvillar channel formation and selective cholesteryl ester transport in a heterologous reconstituted system. Proc. Natl. Acad. Sci. USA 98, 1613–1618 (2001)
Ikemoto, M. et al. Identification of a PDZ-domain-containing protein that interacts with the scavenger receptor class B type I. Proc. Natl. Acad. Sci. USA 97, 6538–6543 (2000).
Pace, M.C. et al. Establishment of an immortalized fetal intrapulmonary artery endothelial cell line. Am. J. Physiol. Lung Cell. Mol. Physiol. 277, L106–L112 (1999).
Shaul, P.W. et al. Acylation targets endothelial nitric oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 271, 6518–6522 (1996).
Bergeron, J. et al. Characterization of human apolipoprotein A-I expressed in Escherichia coli. Biochim. Biophys. Acta 1344, 139–152 (1997).
Weisweiler, P. Isolation and quantitation of apolipoproteins A-I and A-II from human high -density lipoproteins by fast-protein liquid chromatography. Clinica. Chimica. Acta. 169, 249–254 (1987).
Jun, S.S., Chen, Z., Pace, M.C. & Shaul, P.W. Estrogen upregulates cyclooxygenase-1 gene expression in ovine fetal pulmonary artery endothelium. J. Clin. Invest. 102, 176–183 (1998).
Zhu, Y., Lu, P. & Mendelsohn, M.E. Basal release of nitric oxide in mouse aortic rings is inhibited by antiestrogens but not affected by estrogen receptor beta. Circulation 100, I–219 (1999).
Shaul, P.W., Farrar, M.A. & Zellers, T.M. Oxygen modulates endothelium-derived relaxing factor production in fetal pulmonary arteries. Am. J. Physiol. Heart Circ. Physiol. 262, H355–H364 (1992).