On the Linear Stability of Crystals in the Schrödinger–Poisson Model

Journal of Statistical Physics - Tập 165 - Trang 246-273 - 2016
A. Komech1,2, E. Kopylova1,2
1Faculty of Mathematics, Vienna University, Vienna, Austria
2Institute for Information Transmission Problems RAS, Moscow, Russia

Tóm tắt

We consider the Schrödinger–Poisson–Newton equations for crystals with one ion per cell. We linearize this dynamics at the periodic minimizers of energy per cell and introduce a novel class of the ion charge densities that ensures the stability of the linearized dynamics. Our main result is the energy positivity for the Bloch generators of the linearized dynamics under a Wiener-type condition on the ion charge density. We also adopt an additional ‘Jellium’ condition which cancels the negative contribution caused by the electrostatic instability and provides the ‘Jellium’ periodic minimizers and the optimality of the lattice: the energy per cell of the periodic minimizer attains the global minimum among all possible lattices. We show that the energy positivity can fail if the Jellium condition is violated, while the Wiener condition holds. The proof of the energy positivity relies on a novel factorization of the corresponding Hamilton functional. The Bloch generators are nonselfadjoint (and even nonsymmetric) Hamilton operators. We diagonalize these generators using our theory of spectral resolution of the Hamilton operators with positive definite energy (Komech and Kopylova in, J Stat Phys 154(1–2):503–521, 2014, J Spectral Theory 5(2):331–361, 2015). The stability of the linearized crystal dynamics is established using this spectral resolution.

Tài liệu tham khảo

Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008) F. Bonetto, J. L. Lebowitz, L. Rey-Bellet, Fourier’s law: a challenge to theorists, p. 128-150 in: Fokas, A. (ed.) et al., Mathematical physics 2000. International congress, London, GB, 2000, Imperial College Press, London, 2000 Cancès, E., Lahbabi, S., Lewin, M.: Mean-field models for disordered crystals. J. Math. Pure Appl. (9) 100(2), 241–274 (2013) Cancès, E., Stoltz, G.: A mathematical formulation of the random phase approximation for crystals. Ann. I. H. Poincaré - AN 29, 887–925 (2012) Catto, L., Le Bris, C., Lions, P.-L.: The Mathematical Theory of Thermodynamic Limits: Thomas-Fermi Type Models. Clarendon Press, Oxford (1998) Catto, L., Le Bris, C., Lions, P.-L.: On the thermodynamic limit for Hartree–Fock type models. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18, 687–760 (2001) Catto, L., Le Bris, C., Lions, P.-L.: On some periodic Hartree-type models for crystals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19(2), 143–190 (2002) Dudnikova, T., Komech, A.: On the convergence to a statistical equilibrium in the crystal coupled to a scalar field. Russ. J. Math. Phys. 12(3), 301–325 (2005) Dyson, F.J.: Ground-state energy of a finite system of charged particles. J. Math. Phys. 8, 1538–1545 (1967) Dyson, F.J., Lenard, A., Stability of matter I, J. Math. Phys. 8, : 423–434. II, ibid. 9(1968), 698–711 (1967) Giuliani, G., Vignale, G.: Quantum Theory of the Electron Liquid. Cambridge University Press, Cambridge (2005) Gérard, C., Nier, F.: Scattering theory for the perturbations of periodic Schrödinger operators. J. Math. Kyoto Univ. 38(4), 595–634 (1998) Gérard, C., Nier, F.: The Mourre theory for analytically fibered operators. J. Funct. Anal. 152(1), 202–219 (1998) Gohberg, I.C., Krein, M.G.: Theory and Applications of Volterra Operators in Hilbert Space. American Mathematical Society, Providence (1970) Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Springer, Berlin (2003) Komech, A.I.: On the crystal ground state in the Schrödinger-Poisson model. SIAM J. Math. Anal. 47(2), 1001–1021 (2015). arXiv:1310.3084 Komech, A., Kopylova, E.: On eigenfunction expansion of solutions to the Hamilton equations. J. Stat. Phys. 154(1–2), 503–521 (2014). arXiv:1308.0485 Komech, A., Kopylova, E.: On the eigenfunction expansion for Hamilton operators. J. Spectral Theory 5(2), 331–361 (2015) Le Bris, C., Lions, P.-L.: From atoms to crystals: a mathematical journey. Bull. Am. Math. Soc. New Ser. 42(3), 291–363 (2005) Lebowitz, J.L., Lieb, E.H.: Existence of thermodynamics for real matter with Coulomb forces. Phys. Rev. Lett. 22(13), 631–634 (1969) Lebowitz, J.L., Lieb, E.H.: Lectures on the Thermodynamic Limit for Coulomb Systems. Springer Lecture Notes in Physics, vol. 20, , pp. 136-161. Springer, New York (1973) Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2009) Lewin, M., Sabin, J.: The Hartree equation for infinitely many particles. I. Well-posedness theory, arXiv:1310.0603 Lewin, M., Sabin, J.: The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D. arXiv:1310.0604 Panati, G., Spohn, H., Teufel, S.: Effective dynamics for Bloch electrons: Peierls substitution and beyond. Commun. Math. Phys. 242, 547–578 (2003) Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis. Self-Adjointness. Academic Press, New York (1975) Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978) Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991) Stratton, J.A.: Electromagnetic Theory. Wiley, Hoboken (2007)