Determining the resistance to mechanical damage of apples under impact loads

Postharvest Biology and Technology - Tập 146 - Trang 79-89 - 2018
Roman Stopa1, Daniel Szyjewicz1, Piotr Komarnicki1, Łukasz Kuta2
1Institute of Agricultural Engineering, The Faculty of Life Sciences and Technology, Poland
2Institute of Environmental Protection and Development, The Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland

Tài liệu tham khảo

Ahmadi, 2012, Dynamic modeling of peach fruit during normal impact, J. Food Eng., 35, 483, 10.1111/j.1745-4530.2010.00603.x Ahmadi, 2016, Viscoelastic finite element analysis of the dynamic behavior of apple under impact loading with regard to its different layers, Comput. Electron. Agric., 121, 1, 10.1016/j.compag.2015.11.017 Baranowski, 2009, Detection of early apple bruises using pulsed–phase thermography, Postharvest Biol. Technol., 53, 91, 10.1016/j.postharvbio.2009.04.006 Barikloo, 2013, Evaluation of impact effect and fruit properties on apple dynamic behavior, Aust. J. Crop Sci., 7, 1661 Blahovec, 2005, Susceptibility of pear varieties to bruising, Postharvest Biol. Technol., 38, 231, 10.1016/j.postharvbio.2005.07.005 Bollen, 1999, Comparison of methods for estimating the bruise volume of apples, J. Agric. Eng. Res., 74, 325, 10.1006/jaer.1999.0468 Celik, 2011, Deformation behaviour simulation of an apple under drop case by finite element method, J. Food Eng., 104, 293, 10.1016/j.jfoodeng.2010.12.020 Clark, 2003, Quantitative magnetic resonance imaging of’ Fuyu’ persimmon fruit during development and ripening, Magn. Reson. Imaging, 21, 679, 10.1016/S0730-725X(03)00082-1 Doosti-Irani, 2016, Development of multiple regression model to estimate the apple’s bruise depth using thermal maps, Postharvest Biol. Technol., 116, 75, 10.1016/j.postharvbio.2015.12.024 Fadiji, 2016, Susceptibility to impact damage of apples inside ventilated corrugated paperboard packages: effects of package design, Postharvest Biol. Technol., 111, 286, 10.1016/j.postharvbio.2015.09.023 Fadiji, 2016, Susceptibility of apples to bruising inside ventilated corrugated paperboard packages during simulated transport damage, Postharvest Biol. Technol., 118, 111, 10.1016/j.postharvbio.2016.04.001 Fu, 2016, Bruise responses of apple–to–Apple impact, IFAC–Papers OnLine, 49, 347, 10.1016/j.ifacol.2016.10.064 Gołacki, 2009, Bruise resistance of apples (Melrose variety), Teka Kom. Mot. Energ. Roln. PAN, 9, 40 Holt, 1977, Bruising and energy dissipation in apples, J. Texture Stud., 7, 421, 10.1111/j.1745-4603.1977.tb01149.x Hussein, 2018, Preharvest factors influencing bruise damage of fresh fruits – a review, Postharvest Biol. Technol., 229, 45 Jarimopas, 2007, Comparison of package cushioning materials to protect post-harvest impact damage to apples, Packag. Technol. Sci., 20, 315, 10.1002/pts.760 Kabas, 2010, Methods of measuring bruise volume of pear (Pyrus communis L.), Int. J. Food Prop., 13, 1178, 10.1080/10942910903013175 Kheiralipour, 2013, Development of a new threshold based classification model for analyzing thermal imaging data to detect fungal infection of pistachio kernel, Agric. Res., 2, 127, 10.1007/s40003-013-0057-7 Komarnicki, 2016, Evaluation of bruise resistance of pears to impact load, Postharvest Biol. Technol., 114, 36, 10.1016/j.postharvbio.2015.11.017 Komarnicki, 2017, Influence of contact surface type on the mechanical damages of apples under impact loads, Food Bioproc. Tech., 10, 1479, 10.1007/s11947-017-1918-z Komarnicki, 2017, Determination of apple bruise resistance based on the surface pressure and contact area measurements under impact loads, Comput. Electron. Agric., 142, 155, 10.1016/j.compag.2017.08.028 Li, 2014, Quantitative evaluation of mechanical damage to fresh fruits, Trends Food Sci. Technol., 35, 138, 10.1016/j.tifs.2013.12.001 Li, 2016, Characterizing apple picking patterns for robotic harvesting, Comput. Electron. Agric., 127, 633, 10.1016/j.compag.2016.07.024 Li, 2017, Mathematical modelling of mechanical damage to tomato fruits, Postharvest Biol. Technol., 126, 50, 10.1016/j.postharvbio.2016.12.001 Menesatti, 2001, Development of a drop damage index of fruit resistance to damage, J. Agric. Eng. Res., 80, 53, 10.1006/jaer.2000.0669 Opara, 2007, Bruise susceptibilities of’ Gala’ apples as affected by orchard management practices and harvest date, Postharvest Biol. Technol., 43, 47, 10.1016/j.postharvbio.2006.08.012 Opara, 2014, Bruise damage measurement and analysis of fresh horticultural produce – a review, Postharvest Biol. Technol., 91, 9, 10.1016/j.postharvbio.2013.12.009 Opara, 2007, Design and development of a new device for measuring susceptibility to impact damage of fresh produce, N. Z. J. Crop Hortic. Sci., 35, 245, 10.1080/01140670709510191 Pang, 1996, Rapid assessment of the susceptibility of apples to bruising, J. Agric. Eng. Res., 64, 37, 10.1006/jaer.1996.0044 Pasini, 2004, Influence of the fertilization system on the mechanical damage of apples, Biosyst. Eng., 88, 441, 10.1016/j.biosystemseng.2004.04.014 Pathare, 2012, Design of packaging vents for cooling fresh horticultural produce, Food Bioprocess Technol., 5, 2031, 10.1007/s11947-012-0883-9 Qin, 2009, Monte Carlo simulation for quantification of light transport features in apples, Comput. Electron. Agric., 68, 44, 10.1016/j.compag.2009.04.002 Ragni, 2001, Mechanical behaviour of apples, and damage during sorting and packaging, J. Agric. Eng. Res., 78, 273, 10.1006/jaer.2000.0609 Sablani, 2006, Influence of bruising and storage temperature on vitamin C content of tomato fruit, J. Food Agric. Environ., 4, 54 Sadrnia, 2008, Stress distribution on watermelon (cv. `Crimson sweet`) under axial compression, J. Food Eng., 86, 272, 10.1016/j.jfoodeng.2007.10.007 Shafie, 2015, Effect of fruit properties on pomegranate bruising, Int. J. Food Prop., 18, 1837, 10.1080/10942912.2014.948188 Shirvani, 2014, Measurement and evaluation of the apparent modulus of elasticity of apple based on Hooke’s, Hertz’s and Boussinesq’s theories, Measurement, 54, 133, 10.1016/j.measurement.2014.04.014 Stopa, 2014, Distribution of surface pressure of avocado fruit at impact loads, Agric. Eng., 2, 163 Stopa, 2017, Modeling of the carrot root radial press process for different shapes of loading elements using the finite element method, Int. J. Food Prop., 10.1080/10942912.2017.1296862 Stropek, 2010, Determining the coefficient of restitution of apples at different impact velocities, Teka Kom. Mot. Energ. Roln. PAN, 10, 417 Stropek, 2015, A new method for measuring impact related bruises in fruits, Postharvest Biol. Technol., 110, 131, 10.1016/j.postharvbio.2015.07.005 Studman, 1997, Bruising on blush and non–blush sides in apple–to–apple impacts, Trans. ASAE, 40, 1655, 10.13031/2013.21405 Unuigbe, 2013, Assessment of impact damage to apple fruits, Niger. J. Technol., 32, 137 Van Zeebroeck, 2003, Determination of the dynamical behaviour of biological materials during impact using a pendulum device, J. Sound Vibr., 266, 465, 10.1016/S0022-460X(03)00579-0 Van Zeebroeck, 2004, Determining tangential contact force model parameters for viscoelastic materials (apples) using a rheometer, Postharvest Biol. Technol., 33, 111, 10.1016/j.postharvbio.2004.02.008 Van Zeebroeck, 2007, Impact damage of aplles during transport and handling, Postharvest Biol. Technol., 45, 157, 10.1016/j.postharvbio.2007.01.015 Zhang, 2017, An effective method to inspect and classify the bruising degree of apples based on the optical properties, Postharvest Biol. Technol., 127, 44, 10.1016/j.postharvbio.2016.12.008