Low concentrations of fine particle air pollution and mortality in the Canadian Community Health Survey cohort

Tanya Christidis1, Anders C. Erickson2, Amanda J. Pappin1, Dan L. Crouse3, Lauren Pinault1, Scott Weichenthal4, Jeffrey R. Brook5, Aaron van Donkelaar6, Perry Hystad7, Randall V. Martin6, Michael Tjepkema1, Richard T. Burnett8, Michael Bräuer2
1Health Analysis Division, Statistics Canada, 100 Tunney's Pasture Driveway, Ottawa, Ontario, K1A 0T6, Canada
2School of Population and Public Health, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
3Department of Sociology, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick, E3B 5A3, Canada
4Department of Epidemiology, Biostatistics & Occupational Health, McGill University, 1110 Pine Ave West, Montreal, Quebec, H3A 1A3, Canada
5Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, Ontario, M5T 1P8, Canada
6Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, PO Box 15000, Halifax, NS, B3H 4R2, Canada
7College of Public Health and Human Sciences, Oregon State University, 2520 SW Campus Way, Corvallis, Oregon, 97331, USA
8Population Studies Division, Health Canada, 50 Columbine Driveway, Ottawa, Ontario, K1A 0K9, Canada

Tóm tắt

Abstract Background Approximately 2.9 million deaths are attributed to ambient fine particle air pollution around the world each year (PM2.5). In general, cohort studies of mortality and outdoor PM2.5 concentrations have limited information on individuals exposed to low levels of PM2.5 as well as covariates such as smoking behaviours, alcohol consumption, and diet which may confound relationships with mortality. This study provides an updated and extended analysis of the Canadian Community Health Survey-Mortality cohort: a population-based cohort with detailed PM2.5 exposure data and information on a number of important individual-level behavioural risk factors. We also used this rich dataset to provide insight into the shape of the concentration-response curve for mortality at low levels of PM2.5. Methods Respondents to the Canadian Community Health Survey from 2000 to 2012 were linked by postal code history from 1981 to 2016 to high resolution PM2.5 exposure estimates, and mortality incidence to 2016. Cox proportional hazard models were used to estimate the relationship between non-accidental mortality and ambient PM2.5 concentrations (measured as a three-year average with a one-year lag) adjusted for socio-economic, behavioural, and time-varying contextual covariates. Results In total, 50,700 deaths from non-accidental causes occurred in the cohort over the follow-up period. Annual average ambient PM2.5 concentrations were low (i.e. 5.9 μg/m3, s.d. 2.0) and each 10 μg/m3 increase in exposure was associated with an increase in non-accidental mortality (HR = 1.11; 95% CI 1.04–1.18). Adjustment for behavioural covariates did not materially change this relationship. We estimated a supra-linear concentration-response curve extending to concentrations below 2 μg/m3 using a shape constrained health impact function. Mortality risks associated with exposure to PM2.5 were increased for males, those under age 65, and non-immigrants. Hazard ratios for PM2.5 and mortality were attenuated when gaseous pollutants were included in models. Conclusions Outdoor PM2.5 concentrations were associated with non-accidental mortality and adjusting for individual-level behavioural covariates did not materially change this relationship. The concentration-response curve was supra-linear with increased mortality risks extending to low outdoor PM2.5 concentrations.

Từ khóa


Tài liệu tham khảo

GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–94.

Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Fischer P, Nieuwenhuijsen M. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014;383:785–95.

Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, Dominici F, Schwartz JD. Air pollution and mortality in the Medicare population. N Engl J Med. 2017;376:2513–22.

Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287:1132–41.

Crouse DL, Peters PA, Hystad P, Brook JR, van Donkelaar A, Martin RV, Villeneuve PJ, Jerrett M, Goldberg MS, Pope CA III, Brauer M, Brook RD, Robichaud A, Menard R, Burnett RT. Ambient PM2.5, O3, and N2 exposures and associations with mortality over 16 years of follow-up in the Canadian census health and environment cohort (CanCHEC). Environ Health Persp. 2015;123:1180–6.

Pinault LL, Weichenthal S, Crouse DL, Brauer M, Erickson A, van Donkelaar A, Martin RV, Hystad P, Chen H, Finès P. Associations between fine particulate matter and mortality in the 2001 Canadian census health and environment cohort. Environ Res. 2017;159:406–15.

Erickson A, Brauer M, Christidis T, Pinault L, Crouse D, Donkelaar A, Weichenthal S, Pappin A, Tjepkema M, Martin R, Brook J, Hystad P, Burnett R. Evaluation of a method to indirectly adjust for unmeasured covariates in the association between fine particulate matter and mortality. Environ Res. 2019;175:108–116.

Shin HH, Cakmak S, Brion O, Villeneuve P, Turner MC, Goldberg MS, Jerrett M, Chen H, Crouse D, Peters P, Pope CA III. Indirect adjustment for multiple missing variables applicable to environmental epidemiology. Environ Res. 2014;134:482–7.

Pinault L, Tjepkema M, Crouse DL, Weichenthal S, van Donkelaar A, Martin RV, Brauer M, Chen H, Burnett RT. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian Community Health Survey cohort. Environ Health. 2016;15:1–15.

Nasari MM, Szyszkowicz M, Chen H, Crouse D, Turner MC, Jerrett M, Pope CA III, Hubbell B, Fann N, Cohen A. A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution. Air Qual Atmos Hlth. 2016;9:961–72.

Statistics Canada. Canadian Community Health Survey: Detailed information for 2001 (Cycle 1.1). 2007. http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=3359 . Accessed 28 Jan 2019.

Statistics Canada. Canadian Community Health Survey (CCHS): Detailed information for 2003 (Cycle 2.1). 2007. http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=4995 . Accessed 28 Jan 2019.

Statistics Canada. Canadian Community Health Survey (CCHS): Detailed information for 2005 (Cycle 3.1). 2007. http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=22642 . Accessed 28 Jan 2019.

Statistics Canada. Canadian Community Health Survey (CCHS): Detailed information for 2007 (Cycle 4.1). 2008. http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=29539 . Accessed 28 Jan 2019.

Statistics Canada. Canadian Community Health Survey (CCHS): detailed information for 2010. 2014. http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=81424 . Accessed 28 Jan 2019.

Statistics Canada. Canadian Community Health Survey (CCHS): detailed information for 2012. 2012. http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=135927 . Accessed 28 Jan 2019.

Statistics Canada. Social data linkage environment (SDLE). 2017. https://www.statcan.gc.ca/eng/sdle/index. Accessed 28 Jan 2019 . Accessed 28 Jan 2019.

Statistics Canada. Linkage of the Canadian Community Health Survey (CCHS) to mortality, Cancer, hospital administrative files, and tax data (007–2018). 2019. https://www.statcan.gc.ca/eng/record/2018 . Accessed 8 Feb 2019.

Statistics Canada. Directive on Microdata Linkage. 2017. https://www.statcan.gc.ca/eng/record/policy4-1 . Accessed 8 Feb 2019.

Fellegi IP, Sunter AB. A theory for record linkage. J Am Stat Assoc. 1969;64:1183–210.

St-Jean H. SDLE production section. Social data linkage environment (SDLE) methodology report: linkage between the Canadian mortality database (CMDB 2015–16) and the SDLE derived record depository (version 18). Statistics Canada: Ottawa; 2018.

Judd P. SDLE production section. Social data linkage environment (SDLE) methodology report: external linkage between the Canadian Community Health Survey (2001 to 2014) and the SDLE derived record depository (version 5). Statistics Canada: Ottawa; 2017.

Bérard-Chagnon J. Comparison of Place of Residence between the T1 Family File and the Census: Evaluation using record linkage. Ottawa: Statistics Canada; 2017. Catalogue no. 91F0015M — No.13

Finès P, Pinault L, Tjepkema M. Imputing postal codes to analyze ecological variables in longitudinal cohorts: exposure to particulate matter in the Canadian Census Health and Environment Cohort Database. Ottawa: Statistics Canada; 2017. Catalogue no. 11–633-X — No. 006

Statistics Canada. Postal CodeOM Conversion File (PCCF). Ottawa: Statistics Canada; 2017. Catalogue no. 92–154-X

Statistics Canada. Postal CodeOM Conversion File (PCCF) Reference Guide August 2015. Ottawa: Statistics Canada; 2016. Catalogue no. 92–154-G

Statistics Canada. Postal CodeOM Conversion File (PCCF) November 2014. Ottawa: Statistics Canada; 2015. Catalogue no. 92–154-G

van Donkelaar A, Martin RV, Spurr RJ, Burnett RT. High-resolution satellite-derived PM2. 5 from optimal estimation and geographically weighted regression over North America. Environ Sci Technol. 2015;49:10482–91.

Meng J, Li C, Martin RV, van Donkelaar A, Hystad P, Brauer M. Estimated long-term (1981−2016) concentrations of ambient fine particulate matter across North America from chemical transport modeling, satellite remote sensing and ground-based measurements. Environ Sci Technol. 2019;53:5071–9.

Robichaud A, Ménard R, Zaïtseva Y, Anselmo D. Multi-pollutant surface objective analyses and mapping of air quality health index over North America. Air Qual Atmos Hlth. 2016;9:743–59.

Robichaud A, Ménard R. Multi-year objective analyses of warm season ground-level ozone and PM2.5 over North America using real-time observations and Canadian operational air quality models. Atmos Chem Phys. 2014;14:1769–800.

Environment and Climate Change Canada. CHRONOS_Ground-Level_O3_NA_2002.nc to CHRONOS_Ground-Level_O3_NA_2009.nc inclusive. Toronto: Air Quality Research Division; 2017. [generated July 2017]

Hystad P, Setton E, Cervantes A, Poplawski K, Deschenes S, Brauer M, van Donkelaar A, Lamsal L, Martin R, Jerrett M, Demers P. Creating national air pollution models for population exposure assessment in Canada. Environ Health Persp. 2011;119:1123–9.

Crouse DL, Philip S, Van Donkelaar A, Martin RV, Jessiman B, Peters PA, Weichenthal S, Brook JR, Hubbell B, Burnett RT. A new method to jointly estimate the mortality risk of long-term exposure to fine particulate matter and its components. Sci Rep. 2016;6:18916.

Statistics Canada. Illustrated Glossary. Ottawa: Statistics Canada; 2017. Catalogue no. 92–195-X

Gordon DL, Janzen M. Suburban nation? Estimating the size of Canada's suburban population. J Archit Plan Res. 2013;30:197–220.

Matheson FI, Dunn JR, Smith KL, Moineddin R, Glazier RH. Development of the Canadian marginalization index: a new tool for the study of inequality. C J Public Health. 2012;103(Suppl 2):12–6.

Bratsch SG. Standard electrode potentials and temperature coefficients in water at 298.15 K. J Phys Chem Ref Data. 1989;18:1–21.

Weichenthal S, Pinault LL, Burnett RT. Impact of oxidant gases on the relationship between outdoor fine particulate air pollution and nonaccidental, cardiovascular, and respiratory mortality. Sci Rep. 2017;7:16401.

Hart JE, Liao X, Hong B, Puett RC, Yanosky JD, Suh H, Kioumourtzoglou MA, Spiegelman D, Laden F. The association of long-term exposure to PM 2.5 on all-cause mortality in the nurses’ health study and the impact of measurement-error correction. Environ Health. 2015;14:38.

Carey IM, Atkinson RW, Kent AJ, Van Staa T, Cook DG, Anderson HR. Mortality associations with long-term exposure to outdoor air pollution in a national English cohort. Am J Resp Crit Care. 2013;187:1226–33.

Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA III, Apte JS, Brauer M, Cohen A, Weichenthal S, Coggins J. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci U S A. 2018;115:9592–7.

Pinault L, van Donkelaar A, Martin RV. Exposure to fine particulate matter air pollution in Canada. Health Rep. 2017;28:9.

Yin P, Brauer M, Cohen A, Burnett RT, Liu J, Liu Y, Liang R, Wang W, Qi J, Wang L, Zhou M. Long-term fine particulate matter exposure and nonaccidental and cause-specific mortality in a large national cohort of Chinese men. Environ Health Persp. 2017;125:117002.

Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Persp. 2014;122:397–403.

Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet. 2017;389:1907–18.

Brauer M. PM2.5 air pollution, population exposed to levels exceeding WHO guideline value (% of total) for the Global Burden of Disease Study 2017 https://data.worldbank.org/indicator/EN.ATM.PM25.MC.ZS?end=2017&locations=CA&start=1990&view=chart . Accessed 24 May 2019.

Apte JS, Marshall JD, Cohen AJ, Brauer M. Addressing global mortality from ambient PM2. 5. Environ Sci Technol. 2015;49:8057–66.

Beiser M. The health of immigrants and refugees in Canada. C J Public Health. 2005;96(Suppl 2):30–44.

Ng E. The healthy immigrant effect and mortality rates. Health Rep. 2011;22:1–5.

Vang ZM, Sigouin J, Flenon A, Gagnon A. Are immigrants healthier than native-born Canadians? A systematic review of the healthy immigrant effect in Canada. Ethn Health. 2017;22:209–17.

Trovato F, Newbold KB. Understanding the healthy immigrant effect: evidence from Canada. In: Trovato F, editor. Migration, health and survival: international perspectives. Cheltenham: Edward Elgar Publishing Ltd; 2017. p. 15–30.

Omariba DW, Ross NA, Sanmartin C, Tu JV. Neighbourhood immigrant concentration and hospitalization: a multilevel analysis of cardiovascular-related admissions in Ontario using linked data. C J Public Health. 2014;105:404–11.

Crouse DL, Christidis T, Erickson A, Pinault L, Martin RV, Tjepkema M, Hystad P, Pappin AJ, Burnett RT, Brauer M, Weichenthal S. Evaluating the Sensitivity of PM2.5-Mortality Associations to the Spatial and Temporal Scale of Exposure Assessment at Low Particle Mass Concentrations. Epidemiology. Accepted.

Statistics Canada. Canadian Community Health Survey (CCHS): Annual component User guide 2010 and 2009-2010 Microdata files. http://www23.statcan.gc.ca/imdb-bmdi/pub/document/3226_D7_T9_V8-eng.pdf . Accessed 23 May 2019.

Weichenthal S, Villeneuve PJ, Burnett RT, van Donkelaar A, Martin RV, Jones RR, DellaValle CT, Sandler DP, Ward MH, Hoppin JA. Long-term exposure to fine particulate matter: association with nonaccidental and cardiovascular mortality in the agricultural health study cohort. Environ Health Persp. 2014;122:609–15.