Activation of porphyrin photosensitizers by semiconductor quantum dots via two-photon excitation
Tóm tắt
Energy transfer from water-soluble quantum dots (QDs) to porphyrinlike sensitizers is studied by time-resolved spectroscopy of two-photon excitation with femtosecond laser pulses. Evident transfer results are observed. Electron exchange is found to be the dominant transfer mechanism. Relative intensity change between excitonic and trapping emission implies that nonradiative energy transfer occurs through the trapping state of QDs, which presents a way of raising energy transfer efficiency in this type of donor-acceptor pairs. This study underlines the potential of QD-porphyrin model system for applications in two-photon excitation photodynamic therapy.