A Study of Tate Homology via the Approximation Theory with Applications to the Depth Formula

Springer Science and Business Media LLC - Tập 39 - Trang 439-458 - 2023
Olgur Celikbas1, Li Liang2,3, Arash Sadeghi4, Tirdad Sharif4
1Department of Mathematics, West Virginia University, Morgantown, USA
2School of Mathematics and Information Science, Guangzhou University, Guangzhou, P.R. China
3School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, P. R. China
4School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Tóm tắt

In this paper we are concerned with absolute, relative and Tate Tor modules. In the first part of the paper we generalize a result of Avramov and Martsinkovsky by using the Auslander—Buchweitz approximation theory, and obtain a new exact sequence connecting absolute Tor modules with relative and Tate Tor modules. In the second part of the paper we consider a depth equality, called the depth formula, which has been initially introduced by Auslander and developed further by Huneke and Wiegand. As an application of our main result, we generalize a result of Yassemi and give a new sufficient condition implying the depth formula to hold for modules of finite Gorenstein and finite injective dimension.

Tài liệu tham khảo

Araya, T., Takahashi, R., Yoshino, Y.: Homological invariants associated to semi-dualizing bimodules. J. Math. Kyoto Univ., 45, 287–306 (2005) Araya, T., Yoshino, Y.: Remarks on a depth formula, a grade inequality and a conjecture of Auslander. Comm. Algebra, 26, 3793–3806 (1998) Auslander, M.: Modules over unramified regular local rings. Illinois J. Math., 5, 631–647 (1961) Auslander, M., Bridger, M.: Stable Module Theory, Mem. of the AMS, vol. 94, Amer. Math. Soc., Providence, 1969 Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. Fr. (N.S.), 38, 5–37 (1989) Avramov, L. L., Buchweitz, R.-O.: Support varieties and cohomology over complete intersections. Invent. Math., 142, 285–318 (2000) Avramov, L. L., Martsinkovsky A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. London Math. Soc., 85, 393–440 (2002) Bergh, P. A., Celikbas, O., Jorgensen, D. A.: Homological algebra modulo exact zero-divisors. Kyoto J. Math. 54, 879–895 (2014) Bruns, W., Herzog, J.: Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993 Choi, S., Iyengar, S.: On a depth formula for modules over local rings. Comm. Algebra, 29, 3135–3143 (2001) Celikbas, O., Liang, L., Sadeghi, A.: Vanishing of relative homology and depth of tensor products. J. Algebra, 478, 382–396 (2017) Celikbas, O., Sadeghi, A.: Maximal Cohen—Macaulay tensor products. Ann. Mat. Pura Appl., 200, 923–944 (2021) Christensen, L. W., Jorgensen, D. A.: Vanishing of Tate homology and depth formulas over local rings. J. Pure Appl. Algebra, 219, 464–481 (2015) Di, Z., Zhang, X., Liu, Z., et al.: Relative and Tate homology with respect to semidualizing modules. J. Algebra Appl., 13, 1450058 (2014) Dibaei, M. T., Sadeghi, A.: Linkage of modules and the Serre conditions. J. Pure Appl. Algebra, 219, 4458–4478 (2015) Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra, de Gruyter Expositions in Mathematics, Vol. 30, Walter de Gruyter, Berlin, 2000 Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand., 31, 267–285, (1972) Foxby, H.-B.: Homological dimensions of complexes of modules, In: Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), Lecture Notes in Math., Vol. 795, 360–368, Springer, Berlin, 1980 Foxby, H.-B.: Quasi-perfect modules over Cohen-Macaulay rings. Math. Nachr., 66, 103–110 (1975) Gerko, A.: On homological dimensions. Sb. Math., 192, 1165–1179 (2001) Golod, E.: G-dimension and generalized perfect ideals. Trudy Mat. Inst. Steklov, 165, 62–66 (1984) Holm, H.: Gorenstein derived functors. Proc. Amer. Math. Soc., 132, 1913–1923 (2004) Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra, 205, 423–445 (2006) Huneke, C., Wiegand, R.: Tensor products of modules and the rigidity of Tor. Math. Ann., 299, 449–476 (1994) Huneke, C., Wiegand, R.: Correction: Math. Ann., 338, 291–293 (2007) Iacob, A.: Absolute, Gorenstein, and Tate torsion modules. Comm. Algebra, 35, 1589–1606 (2007) Ischebeck, F.: Eine Dualitt zwischen den Funktoren Ext und Tor. J. Algebra, 11, 510–531 (1969) Iyengar, S.: Depth for complexes, and intersection theorems. Math. Z., 230, 545–567 (1999) Jensen, C. U.: On the vanishing of \(\underleftarrow{\lim}^{(i)}\). J. Algebra, 15, 151–166 (1970) Jorgensen, D. A.: Complexity and Tor on a complete intersection. J. Algebra, 211, 578–598 (1999) Jorgensen, D. A.: A generalization of the Auslander-Buchsbaum formula. J. Pure Appl. Algebra, 144, 145–155 (1999) Jorgensen, D. A.: On tensor products of rings and extension conjectures. J. Commut. Algebra, 1, 635–646 (2009) Kawasaki, T.: Surjective-Buchsbaum modules over Cohen-Macaulay local rings. Math. Z., 218, 191–205 (1995) Khatami, L., Yassemi, S.: Cohen-Macaulayness of tensor products. Rocky Mountain J. Math., 34, 205–213 (2004) Sadeghi, A.: Linkage of finite GC-dimension modules. J. Pure Appl. Algebra, 221, 1344–1365 (2017) Sahandi, P., Sharif, T., Yassemi, S.: Depth formula via complete intersection flat dimension. Comm. Algebra, 39, 4002–4013 (2011). Şega, L. M.: Self-tests for freeness over commutative Artinian rings. J. Pure Appl. Algebra, 215, 1263–1269 (2011) Salimi, M., Tavasoli, E., Sather-Wagstaff, S., Yassemi, S.: Relative Tor functors with respect to a semidualizing module. Algebr. Represent. Theory, 17, 103–120 (2014) Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules. Math. Z., 264, 571–600 (2010) Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules. J. Algebra, 324, 2336–2368 (2010) Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theory, 14, 403–428 (2011) Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand., 106, 5–22 (2010) Vasconcelos, W. V.: Divisor Theory in Module Categories, North-Holland Math. Studies, vol. 14, Notas de Matemática 53, North-Holland, Amsterdam, 1974. White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra, 2, 111–137 (2010) Yassemi, S.: G-dimension. Math. Scand., 77, 161–174 (1995) Yoshida, K.: Tensor products of perfect modules and maximal surjective Buchsbaum modules. J. Pure Appl. Algebra, 123, 313–326 (1998)