Effects of serotonin on electrical properties of Madin-Darby canine kidney cells

Pflügers Archiv - Tập 411 - Trang 394-400 - 1988
M. Paulmichl1, F. Friedrich1, E. Wöll1, H. Weiss1, F. Lang1
1Institute of Physiology University of Innsbruck, Innsbruck, Austria

Tóm tắt

The present study has been performed to test for the influence of serotonin on the potential difference across the cell membrane (PD) of Madin-Darby canine kidney (MDCK)-cells. Under control conditions PD averages −48.6±0.6 mV (n=98). Increasing extracellular potassium concentration from 5.4 to 10 and 20 mmol/l depolarizes the cell membrane by +6.3±0.6 mV (n=6) and +14.1±1.0 mV (n=12), respectively. The cell membrane is transiently hyperpolarized to −67.8±0.8 mV (n=63) by 1 μmol/l serotonin. In the presence of serotonin, increasing extracellular potassium concentration from 5.4 to 20 mmol/l depolarizes the cell membrane by +26.4±1.0 mV (n=11). 1 mmol/l barium depolarizes the cell membrane by +15.7±1.3 mV (n=17) and abolishes the effect of step increases of extracellular potassium concentration from 5.4 to 10 mmol/l. In the presence of barium, serotonin leads to a transient hyperpolarization by −26.3±1.0 mV (n=16). During this transient hyperpolarization, the cell membrane is sensitive to extracellular potassium concentration despite the continued presence of barium. 10 μmol/l methysergide hyperpolarize the cell membrane by −7.2±2.0 mV (n=6). In the presence of 10μmol/l methysergide, the effect of serotonin is virtually abolished (+0.4±0.9 mV,n=6). 1 μmol/l ketanserin, a 5-HT2 receptor blocking agent, ICS 205-930, a 5-HT3 receptor blocking agent, and phentolamine, an unspecific α-receptor blocking agent, do not significantly modify the effect of serotonin. In the nominal absence of extracellular calcium, the effect of serotonin is markedly reduced. In conclusion, serotonin hyperpolarizes MDCK-cells by increasing apparent potassium conductance. This effect is transmitted by 5-HT1 receptors and depends on extracellular calcium.

Tài liệu tham khảo