An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ali, K. M. (1995).Acomparison of methods for learning and combining evidence from multiple models. Technical Report 95–47, Department of Information and Computer Science, University of California, Irvine.
Ali, K. M. & Pazzani, M. J. (1996). Error reduction through learning multiple descriptions. Machine Learning, 24(3), 173–202.
Bauer, E. & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1/2), 105–139.
Breiman, L. (1994). Heuristics of instability and stabilization in model selection. Technical Report 416, Department of Statistics, University of California, Berkeley, CA.
Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (1996b). Bias, variance, and arcing classifiers. Technical Report 460, Department of Statistics, University of California, Berkeley, CA.
Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895–1924.
Dietterich, T. G. & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance of decision tree algorithms.Technical Report, Department of Computer Science, Oregon State University, Corvallis, Oregon. Available from ftp://ftp.cs.orst.edu/pub/tgd/papers/tr-bias.ps.gz.
Freund, Y. & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proc. 13th International Conference on Machine Learning (pp. 148–146). Morgan Kaufmann.
Kohavi, R. & Kunz, C. (1997). Option decision trees with majority votes. In Proceedings of the Fourteenth International Conference on Machine Learning (pp. 161–169). San Francisco, CA: Morgan Kaufman.
Kohavi, R., Sommerfield, D., & Dougherty, J. (1997). Data mining using MLC++, a machine learning library in C++. International Journal on Artificial Intelligence Tools, 6(4), 537–566.
Maclin, R. & Opitz, D. (1997). An empirical evaluation of bagging and boosting. In Proceedings of the Fourteenth National Conference on Artificial Intelligence (pp. 546–551). Cambridge, MA: AAAI Press/MIT Press.
Margineantu, D. D. & Dietterich, T. G. (1997). Pruning adaptive boosting. In Proc. 14th International Conference on Machine Learning (pp. 211–218). Morgan Kaufmann.
Merz, C. J. & Murphy, P. M. (1996). UCI repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html.
Quinlan, J. R. (1993). C4.5: Programs for empirical learning. Morgan Kaufmann, San Francisco, CA.
Quinlan, J. R. (1996). Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference on Artificial Intelligence (pp. 725–730). Cambridge, MA: AAAI Press/MIT Press.