Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles

American Association for the Advancement of Science (AAAS) - Tập 308 Số 5730 - Trang 1901-1905 - 2005
Mark Z. Jacobson1,2, Whitney Colella1,2, David M. Golden1,2
1Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305–4020, USA.
2Department of Mechanical Engineering, Stanford University, Stanford, CA 94305–3032, USA.

Tóm tắt

Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.

Từ khóa


Tài liệu tham khảo

10.1126/science.305.5686.958

10.1126/science.1085169

10.1126/science.1089527

N. J. Warwick, S. Bekki, E. G. Nisbet, J. A. Pyle, Geophys. Res. Lett.31, L05107 (2004).

10.1029/2000JD900559

10.1029/2000JD900560

M. Z. Jacobson, J. H. Seinfeld, G. R. Carmichael, D. G. Streets, Geophys. Res. Lett.31, L02116 (2004).

U.S. Environmental Protection Agency (EPA) Clearing-house for Inventories and Emission Factors (2003) (www.epa.gov/ttn/chief/).

Supporting materials are available on Science Online.

W. C. Colella M. Z. Jacobson D. M. Golden J. Power Sources in press.

National Academy of Sciences The Hydrogen Economy: Opportunities Costs Barriers and R&D Needs (National Academies Press Washington DC 2004).

10.1029/1999JD900788

10.1038/nature01917

10.1023/A:1010648913655

J. B. Heywood Internal Combustion Engine Fundamentals (McGraw-Hill New York 1988).

D. R. McCubbin, M. A. Delucchi, J. Transp. Econ. Policy33, 253 (1999).

M. A. Delucchi, J. Transp. Econ. Policy34, 135 (2000).

ExternE—Externalities of Energy Vol. 7: Methodology 1998 (1998) (www.externe.info/reports.html).

10.1126/science.1103197

10.1126/science.1093965

C. L. Archer, M. Z. Jacobson, J. Geophys. Res.108, 4289 (2003).

M. Z. Jacobson G. M. Masters Science 293 1438 (2001) and E-Letter response (www.sciencemag.org/cgi/eletters/294/5544/1000).

M. Bolinger R. Wiser “Summary of Power Authority Letters of Intent for Renewable Energy” (memorandum Lawrence Berkeley National Laboratory 30 October 2001).

National Renewable Energy Laboratory (NREL) Technology Brief: Analysis of Current-Day Commercial Electrolyzers (NREL report FS-560-36705 NREL Golden CO September 2004).

D. B. Myers G. D. Ariff R. C. Kuhn B. D. James Hydrogen from renewable energy sources: Pathway to 10 quads for transportation uses in 2030 to 2050 FY 2003 Progress Report (2003) (www.eere.energy.gov/hydrogenandfuelcells/pdfs/iia11_myers.pdf).

K. Lee Economic Feasibility of Producing Hydrogen Using Excess Electricity from Wind Turbines on the Big Island of Hawaii (World Renewable Energy Congress VIII Denver CO 3 September 2004) www.sentech.org/Lee %20K_Economic%20Feasibility%20Hawaii.pdf.

M. Z. Jacobson, J. Geophys. Res.109, D21201 (2004).

10.1029/2001JD001376

U.S. Environmental Protection Agency Clearinghouse for Inventories and Emission Factors (www.epa.gov/ttn/chief).

Supported by the Global Climate and Energy Project at Stanford University and by NASA. We thank J. Koomey and M. Delucchi for helpful comments.