Polymer Side-Chain Degradation as a Tool to Control the Destabilization of Polyplexes

Springer Science and Business Media LLC - Tập 21 - Trang 170-176 - 2004
Arjen M. Funhoff1, Cornelus F. van Nostrum1, Adriënne P. C. A. Janssen1, Marcel H. A. M. Fens1, Daan J. A. Crommelin1, Wim E. Hennink1
1Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands

Tóm tắt

Purpose. We purposed to design a cationic polymer that binds to pDNA to form polyplexes and that subsequently degrades within a few days at physiological pH and temperature, releasing the DNA in the cytosol of a cell. Methods. We synthesized a new monomer carbonic acid 2-dimethylamino-ethyl ester 1-methyl-2-(2-methacryloylamino)-ethyl ester (abbreviated HPMA-DMAE) and the corresponding polymer. Hydrolysis of the carbonate ester of both the monomer and the polymer was investigated at 37°C. The DNA condensing properties of the pHPMA-DMAE was studied using dynamic light scattering (DLS) and zeta potential measurements. Degradation of the polyplexes at 37°C and pH 7.4 was monitored with DLS and gel electrophoresis. In vitro transfections were performed in COS-7 cell line. Results. pHPMA-DMAE is able to condense DNA into small particles (110 nm) with a positive zeta potential. The half-life of the polymer and monomer at 37°C and pH 7.4 was around 10 h whereas at pH 5, the half-life was 380 h. In line with this, due to hydrolysis of the side groups, pHPMA-DMAE-based polyplexes dramatically increased in size at 37°C and pH 7.4 whereas at pH 5.0, only a very small increase was observed. Interestingly, intact DNA was released from the polyplexes after 48 h at pH 7.4 whereas all DNA remained bound to the polymer at pH 5.0. Polyplexes were able to transfect cells with minimal cytotoxicity if the endosomal membrane-disrupting peptide INF-7 was added to the polyplex formulation. Conclusions. Degradation of the cationic side-chains of a polymer is a new tool for time-controlled release of DNA from polyplexes, preferably within the cytosol and/or nucleus.

Tài liệu tham khảo

M. G. Rots, D. T. Curiel, W. R. Gerritsen, and H. J. Haisma. Targeted cancer gene therapy: the flexibility of adenoviral gene therapy vectors. J. Controlled Release 87:159-165 (2003). B. Blits, G. J. Boer, and J. Verhaagen. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration. Cell Transplant. 11:593-613 (2002). W. T. Godbey and A. G. Mikos. Recent progress in gene delivery using non-viral transfer complexes. J. Controlled Release 72:115-125 (2001). T. Merdan, J. Kopecek, and T. Kissel. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Del. Rev 54:715-758 (2002). S. C. De Smedt, J. Demeester, and W. E. Hennink. Cationic polymer based gene delivery systems. Pharm. Res. 17:113-126 (2000). M. D. Brown, A. G. Schatzlein, and I. F. Uchegbu. Gene delivery with synthetic (non viral) carriers. Int. J. Pharm. 229:1-21 (2001). C. M. Wiethoff and C. R. Middaugh. Barriers to nonviral gene delivery. J. Pharm. Sci. 92:203-217 (2003). O. Boussif, F. Lezoualch, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo – polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297-7301 (1995). J. Haensler and F. C. Szoka. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4:372-379 (1993). P. van de Wetering, E. E. Moret, N. M. E. Schuurmans-Nieuwenbroek, M. J. van Steenbergen, and W. E. Hennink. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjug. Chem. 10:589-597 (1999). N. K. Subbarao, R. A. Parente, F. C. Szoka, Jr., L. Nadasdi, and K. Pongracz. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry 26:2964-2972 (1987). C. Plank, B. Oberhauser, K. Mechtler, C. Koch, and E. Wagner. The influence of endosome-disruptive peptides on gene-transfer using synthetic virus-like gene-transfer systems. J. Biol. Chem. 269:12918-12924 (1994). A. M. Funhoff, C. F. van Nostrum, G. A. Koning, N. M. E. Schuurmans-Nieuwenbroek, D. J. A. Crommelin, and W. E. Hennink. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules in press, 2004). T. R. Kyriakides, C. Y. Cheung, N. Murthy, P. Bornstein, P. S. Stayton, and A. S. Hoffman. pH-Sensitive polymers that enhance intracellular drug delivery in vivo. J. Controlled Release 78:295-303 (2002). C. Arigita, N. J. Zuidam, D. J. A. Crommelin, and W. E. Hennink. Association and dissociation characteristics of polymer/DNA complexes used for gene delivery. Pharm. Res. 16:1534-1541 (1999). Y. B. Lim, Y. H. Choi, and J. S. Park. A self-destroying polycationic polymer: biodegradable poly(4-hydroxy-L-proline ester). J. Am. Chem. Soc. 121:5633-5639 (1999). D. Putnam and R. Langer. Poly(4-hydroxy-L-proline ester): low-temperature polycondensation and plasmid DNA complexation. Macromolecules 32:3658-3662 (1999). Y-B. Lim, S-O. Han, H-U. Kong, Y. Lee, J-S. Park, B. Jeong, and S. W. Kim. Biodegradable polyester, poly[alpha-(4 aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharm. Res. 17:811-816 (2000). Y-B. Lim, C-H. Kim, K. Kim, S. W. Kim, and J-S. Park. Development of a safe gene delivery system using biodegradable polymer, poly[α-(4-aminobutyl)-L-glycolic acid]. J. Am. Chem. Soc. 122:6524-6525 (2000). H. Petersen, T. Merdan, K. Kunath, D. Fischer, and T. Kissel. Poly(ethylenimine-co-L-lactamide-co-succinamide): a biodegradable polyethylenimine derivative with an advantageous pH-dependent hydrolytic degradation for gene delivery. Bioconjug. Chem. 13:812-821 (2002). C. H. Ahn, S. Y. Chae, Y. H. Bae, and S. W. Kim. Biodegradable poly (ethylenimine) for plasmid DNA delivery. J. Controlled Release 80:273-282 (2002). J. Luten, J. H. van Steenis, R. van Someren, J. Kemmink, N. M. E. Schuurmans-Nieuwenbroek, G. A. Koning, D. J. A. Crommelin, C. F. van Nostrum, and W. E. Hennink. Polyphosphazenes as biodegradable non-viral vector systems. J. Controlled Release 89:483-497 (2003). C. M. Varga, K. Hong, and D. A. Lauffenburger. Quantitative analysis of synthetic gene delivery vector design properties. Mol. Therapy 4:438-446 (2001). P. van de Wetering, N. J. Zuidam, M. J. van Steenbergen, O. A. G. J. Houwen, W. J. M. Underberg, and W. E. Hennink. A mechanistic study of the hydrolytic stability of poly(2-(dimethylamino)ethyl methacrylate). Macromolecules 31:8063-8068 (1998). W. N. van Dijk-Wolthuis, M. J. van Steenbergen, W. J. Underberg, and W. E. Hennink. Degradation kinetics of methacrylated dextrans in aqueous solution. J. Pharm. Sci. 86:413-417 (1997). J. Kopecek, P. Kopeckova, T. Minko, and Z. R. Lu. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm. 50:61-81 (2000). D. Oupicky, C. Konak, K. Ulbrich, M. A. Wolfert, and L. W. Seymour. DNA delivery systems based on complexes of DNA with synthetic polycations and their copolymers. J. Controlled Release 65:149-171 (2000). D. Oupicky, C. Konak, and K. Ulbrich. DNA complexes with block and graft copolymers of N-(2-hydroxypropyl) methacrylamide and 2-(trimethylammonio)ethyl methacrylate J. Biomater. Sci. Polymer Ed. 10:573-590 (1999). J. Y. Cherng, P. van de Wetering, H. Talsma, D. J. A. Crommelin, and W. E. Hennink. Effect of size and serum proteins on transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles. Pharm. Res. 13:1038-1042 (1996). T. Bieber, W. Meissner, S. Kostin, A. Niemann, and H. P. Elsasser. Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J. Controlled Release 82:441-454 (2002). W. T. Godbey, M. A. Barry, P. Saggau, K. K. Wu, and A. G. Mikos. Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. J. Biomed. Mater. Res. 51:321-328 (2000). J. P. Yang and L. Huang. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio cationic liposome to DNA. Gene Ther. 4:950-960 (1997). F. J. Verbaan, C. Oussoren, C. J. Snel, M. Verbeek, D. J. A. Crommelin, W. E. Hennink, and G. Storm. Steric stabilization of poly(2-(dimethylamino)ethyl methacrylate) based polyplexes mediates prolonged circulation and tumor targeting in mice. J. Gene Med. V. Escriou, M. Carriere, D. Scherman, and P. Wils. NLS bioconjugates for targeting therapeutic genes to the nucleus. Adv. Drug Deliv. Rev. 55:295-306 (2003). E. Hebert. Improvement of exogenous DNA nuclear importation by nuclear localization signal-bearing vectors: a promising way for non-viral gene therapy? Biol. Cell 95:59-68 (2003).