Axonal Loss and Neurofilament Phosphorylation Changes Accompany Lesion Development and Clinical Progression in Multiple Sclerosis

Brain Pathology - Tập 21 Số 4 - Trang 428-440 - 2011
Lucas Schirmer1, Jack P. Antel2, Wolfgang Brück1, Christine Stadelmann1
1Department of Neuropathology, University Medical Centre, Göttingen, Germany
2Montreal Neurological Institute, McGill University, Montreal, Canada

Tóm tắt

AbstractNeuroaxonal damage and loss are increasingly recognized as disability determining features in multiple sclerosis (MS) pathology. However, little is known about the long‐term sequelae of inflammatory demyelination on neurons and axons.Spinal cord tissue of 31 MS patients was compared to three amyotrophic lateral sclerosis (ALS) and 10 control subjects. MS lesions were staged according to the density of KiM‐1P positive macrophages and microglia and the presence of myelin basic protein (MBP) positive phagocytes. T cells were quantified in the parenchyma and meninges. Neuroaxonal changes were studied by immunoreactivity (IR) for amyloid precursor protein (APP) and variably phosphorylated neurofilaments (SMI312, SMI31, SMI32).Little T cell infiltration was still evident in chronic inactive lesions. The loss of SMI32 IR in ventral horn neurons correlated with MS lesion development and disease progression. Similarly, axonal loss in white matter (WM) lesions correlated with disease duration. A selective reduction of axonal phosphorylated neurofilaments (SMI31) was observed in WM lesions. In ALS, the loss of neuronal SMI32 IR was even more pronounced, whereas the relative axonal reduction resembled that found in MS.Progressive neuroaxonal neurofilament alterations in the context of chronic inflammatory demyelination may reflect changes in neuroaxonal metabolism and result in chronic neuroaxonal dysfunction as a putative substrate of clinical progression.

Từ khóa


Tài liệu tham khảo

10.1093/brain/awm110

10.1093/brain/awh550

10.1191/135248506ms1304rr

10.1093/brain/123.6.1174

10.1002/1531-8249(200012)48:6<893::AID-ANA10>3.0.CO;2-B

10.1016/S0022-510X(02)00069-2

10.1097/nen.0b013e3181462841

10.1007/s00415-005-5002-7

10.1002/ana.410380514

10.1002/cne.10760

Charcot JM, 1868, Histologie de la sclérose en plaque, Gaz Hop Civils Militaires, 41, 554

10.1002/ana.10326

10.1093/brain/118.6.1583

10.1093/brain/121.8.1469

10.1093/brain/awl074

10.1002/ana.20736

10.1093/brain/awh323

10.1093/brain/120.3.393

10.1093/brain/awp070

10.1056/NEJMra052130

10.1136/jnnp.57.9.1039

10.1046/j.1365-2990.1999.00205.x

10.1001/archneur.62.12.1859

10.1111/j.1750-3639.2006.00018.x

10.1111/j.1750-3639.2008.00228.x

10.1002/ana.21800

10.1016/j.nbd.2008.01.001

10.1007/s00401-007-0308-4

10.1084/jem.20040452

10.1038/nn.2471

10.1093/brain/awf235

10.1212/WNL.33.11.1444

10.1093/brain/awh641

10.1002/neu.10270

10.1093/brain/119.3.701

10.1093/brain/123.2.308

10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q

10.1093/brain/awh132

10.1093/brain/awn105

10.1093/brain/awp046

10.1093/brain/awf177

10.1007/978-3-540-34686-9

10.1111/j.1750-3639.2008.00177.x

10.1016/j.expneurol.2008.06.008

10.1038/71555

10.1016/j.expneurol.2006.07.014

Radzun HJ, 1991, Detection of a monocyte/macrophage differentiation antigen in routinely processed paraffin‐embedded tissues by monoclonal antibody Ki‐M1P, Lab Invest, 65, 306

10.1002/ana.21799

10.1016/S0166-2236(03)00199-1

10.1016/j.tins.2010.01.002

10.1038/71548

10.1093/brain/awf015

10.1073/pnas.80.19.6126

10.1093/brain/awp106

10.1177/1352458510364992

10.1056/NEJM199801293380502

10.1016/S0006-8993(00)01954-5

10.1016/j.neurobiolaging.2009.12.001

10.1097/01.jnen.0000190067.20935.42

10.1002/ana.21719

10.1523/JNEUROSCI.23-27-09046.2003

10.1212/01.wnl.0000237551.26858.39

10.1002/ana.1077