Involvement of AMP‐activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain

Mariko Saito1,2, Mitsuo Saito3, Bhaskar C. Das4
1Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg, Orangeburg, NY, 10962, USA
2Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
3Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg, Orangeburg, NY, 10962, USA
4Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg 19-201, New York, NY, 10029, USA

Tóm tắt

Microglial activation followed by neuroinflammation is a defense mechanism of the brain to eliminate harmful endogenous and exogenous materials including pathogens and damaged tissues, while excessive or chronic neuroinflammation may cause or exacerbate neurodegeneration observed in brain injuries and neurodegenerative diseases. Depending on conditions/environments during activation, microglia acquire distinct phenotypes, such as pro‐inflammatory, anti‐inflammatory, and disease‐associated phenotypes, and show their ability to phagocytose various objects and produce pro‐and anti‐inflammatory mediators. Prevention of excessive inflammation by regulating the microglia's pro/anti‐inflammatory balance is important for alleviating progression of brain injuries and diseases. Among many factors involved in the regulation of microglial phenotypes, cellular energy status plays an important role. Adenosine monophosphate‐activated protein kinase (AMPK), which serves as a master sensor and regulator of energy balance, is considered a candidate molecule. Accumulating evidence from adult rodent studies indicates that AMPK activation promotes anti‐inflammatory responses in microglia exposed to danger signals or various stressors mainly through inhibition of the nuclear factor κB (NF‐κB) signaling and activation of the nuclear factor erythroid‐2‐related factor‐2 (Nrf2) pathway. However, AMPK activation in neurons exposed to stressors/insults may exacerbate neuronal damage if AMPK activation is excessive or prolonged. While AMPK affects microglial activation states and neuronal cell survival rates in both the adult and the developing brain, studies in the developing brain are still scarce, even though activated AMPK is highly expressed especially in the neonatal brain. More in depth studies in the developing brain are important, because neuroinflammation/neurodegeneration occurred during development can result in long‐lasting brain damage.

Tài liệu tham khảo

10.1002/glia.22835 Akhtar F., 2017, Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress, J. Neuroinflammation, 14, 195, 10.1186/s12974-017-0965-8 10.1038/nri1391 Arbelaez‐Quintero I., 2017, To use or not to use metformin in cerebral ischemia: a review of the application of metformin in stroke rodents, Stroke Res. Treat., 2017, 9756429 10.1007/s11011-013-9475-2 10.1007/s11011-014-9632-2 10.1523/JNEUROSCI.4373-15.2016 10.1038/nn.3560 10.1038/nrn2038 10.1016/j.bbalip.2007.04.018 10.1016/j.pneurobio.2017.10.002 10.1074/jbc.M509329200 Chen C.C., 2014, Amelioration of LPS‐induced inflammation response in microglia by AMPK activation, Biomed Res. Int., 2014, 692061 10.3389/fphar.2018.00851 10.3389/fimmu.2014.00594 10.1186/1742-2094-11-98 10.1523/JNEUROSCI.2939-14.2015 10.1186/1742-2094-11-70 10.1146/annurev-immunol-051116-052358 10.1083/jcb.200909166 R.Corpas C.Grinan‐Ferre E.Rodriguez‐Farre M.Pallas C.Sanfeliu.Resveratrol induces brain resilience against alzheimer neurodegeneration through proteostasis enhancement.Mol. Neurobiol.2018 10.1385/JMN:17:1:45 10.3233/JPD-171296 10.1073/pnas.0610068104 10.1016/j.devcel.2009.01.005 10.1038/cdd.2012.49 10.1111/j.1471-4159.2006.04162.x 10.1016/S0306-4522(03)00558-X 10.1111/acer.12639 10.1074/jbc.M109.056762 10.1186/s13041-016-0194-6 10.1371/journal.pone.0026317 10.18632/oncotarget.20779 10.1523/JNEUROSCI.2102-11.2011 10.1523/JNEUROSCI.0140-15.2016 10.1016/j.immuni.2018.04.016 10.1016/j.nbd.2015.12.015 10.1016/j.ejphar.2015.10.026 10.1002/glia.23271 10.1002/jnr.23356 10.1523/JNEUROSCI.4288-03.2004 10.1016/j.cmet.2013.08.019 10.1128/MCB.05114-11 10.1038/nrneurol.2015.13 T.R.Hammond C.Dufort L.Dissing‐Olesen S.Giera A.Young A.Wysoker A.J.Walker F.Gergits M.Segel J.Nemesh S.E.Marsh A.Saunders E.Macosko F.Ginhoux J.Chen R.J.M.Franklin X.Piao S.A.McCarroll B.Stevens.Single‐cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell‐state changes.Immunity2018 Hamzei T.S., 2018, Targeted intracerebral delivery of the anti‐inflammatory cytokine IL13 promotes alternative activation of both microglia and macrophages after stroke, J. Neuroinflammation, 15, 174, 10.1186/s12974-018-1212-7 10.1042/bst0301064 10.1038/nrm3311 10.1016/j.tcb.2015.10.013 10.1186/1475-4924-2-28 10.1016/j.cmet.2005.05.009 10.1111/jnc.13726 10.1038/nrneurol.2014.207 10.1016/j.taap.2016.03.004 10.1021/bi400399f 10.1038/emm.2016.81 10.1016/j.bcp.2015.11.003 J.Ji T.F.Xue X.D.Guo J.Yang R.B.Guo J.Wang J.Y.Huang X.J.Zhao X.L.Sun.Antagonizing peroxisome proliferator‐activated receptor gamma facilitates M1‐to‐M2 shift of microglia by enhancing autophagy via the LKB1‐AMPK signaling pathway.Aging Cell2018e12774 10.1111/bph.12655 10.1159/000350435 10.1016/j.bbadis.2014.06.012 10.1007/s10571-017-0504-2 10.1016/j.cellsig.2013.06.007 10.1016/j.cell.2017.05.018 10.1016/j.immuni.2017.08.008 10.1016/j.neuroscience.2013.09.010 10.1074/jbc.M310991200 10.1186/1750-2187-5-15 10.1021/jf506110y 10.1523/JNEUROSCI.22-07-02478.2002 10.1073/pnas.1432609100 10.3389/fimmu.2018.00698 10.1038/jcbfm.2009.255 10.1161/STROKEAHA.107.490904 10.1161/STROKEAHA.110.589697 10.1111/jnc.13239 10.1016/j.ejphar.2017.05.055 10.1016/j.brainresbull.2017.05.001 Li C., 2018, Inhibitory effects of betulinic acid on LPS‐Induced neuroinflammation involve M2 microglial polarization via CaMKKbeta‐Dependent AMPK activation, Front. Mol. Neurosci., 11, 98, 10.3389/fnmol.2018.00098 10.1111/jnc.14267 10.1007/s11064-015-1569-2 10.1371/journal.pone.0037215 10.1002/jcb.22580 M.Lu C.Su C.Qiao Y.Bian J.Ding G.Hu.Metformin prevents dopaminergic neuron death in MPTP/P‐Induced mouse model of parkinson's disease via autophagy and mitochondrial ROS clearance.Int. J. Neuropsychopharmacol.2016;19 Mancuso R., 2014, Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice, Neurotherapeutics, 11, 419 Matcovitch‐Natan O., 2016, Microglia development follows a stepwise program to regulate brain homeostasis, Science, 353, 10.1126/science.aad8670 10.1074/jbc.M409985200 10.1016/j.biopsych.2013.07.011 10.1074/jbc.M604399200 S.Mori P.Maher B.Conti.Neuroimmunology of the Interleukins 13 and 4.Brain Sci.2016;6 10.1016/j.pneurobio.2017.01.002 10.3389/fncel.2017.00190 10.1128/MCB.05124-11 10.1038/cddis.2014.53 10.4049/jimmunol.175.1.566 10.1016/j.bbrc.2009.05.106 10.1016/j.neuropharm.2014.10.028 10.1186/s12974-017-0981-8 10.1038/nature11862 10.1016/j.tem.2011.12.006 10.1016/j.brainres.2016.05.013 10.1111/bph.13139 10.1016/j.bbi.2017.12.009 10.1080/08923973.2018.1434791 10.1186/s12974-017-0918-2 10.1016/j.expneurol.2017.08.013 10.1016/j.bbi.2016.08.018 10.3233/JAD-140444 Ramamurthy S., 2006, Developing a head for energy sensing: AMP‐activated protein kinase as a multifunctional metabolic sensor in the brain, J. Physiol. (Paris), 574, 85 10.1016/j.neuroscience.2013.11.048 10.1038/nn.4338 10.1038/nri2565 10.1161/STROKEAHA.114.004889 10.4110/in.2018.18.e27 10.1016/j.bbi.2018.07.023 10.1111/jnc.13034 10.1111/j.1471-4159.2007.04836.x 10.1007/s11064-009-9975-y 10.1007/s11064-009-0116-4 10.1111/j.1471-4159.2012.07710.x 10.1194/jlr.M056580 Satrom K.M., 2018, Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long‐term synaptogenesis in the hippocampus and alters behavior in rats, J. Neuroinflammation, 15, 82, 10.1186/s12974-018-1121-9 10.1523/JNEUROSCI.4586-14.2015 10.1016/j.neuron.2012.03.026 10.1016/j.mcn.2018.04.005 10.1016/j.neulet.2011.04.042 10.1186/s12974-016-0752-y 10.1073/pnas.0308061100 10.1038/s41467-017-00707-0 10.1038/s41577-018-0051-1 10.1177/0271678X16656201 10.1523/JNEUROSCI.1619-13.2014 10.1159/000359950 10.3389/fnagi.2017.00139 10.1097/ALN.0000000000000856 10.1016/j.intimp.2018.08.004 C.Sousa A.Golebiewska S.K.Poovathingal T.Kaoma Y.Pires‐Afonso S.Martina D.Coowar F.Azuaje A.Skupin R.Balling K.Biber S.P.Niclou A.Michelucci.Single‐cell transcriptomics reveals distinct inflammation‐induced microglia signatures.EMBO Rep.2018;19 10.1074/jbc.271.2.611 10.1146/annurev-neuro-061010-113810 10.3389/fnagi.2017.00176 10.1159/000478920 10.1186/1742-2094-11-26 10.18632/oncotarget.20105 10.1046/j.1471-4159.1999.721707.x 10.1038/nn.3358 10.1186/1471-2202-13-11 10.1111/cns.12218 10.1016/j.cell.2017.07.023 10.1007/s11010-017-3064-3 10.1189/jlb.3MR0416-204R 10.1159/000232556 10.1111/bph.13426 10.1007/s10571-017-0554-5 10.1016/j.febslet.2013.01.067 10.1093/jn/nxx074 10.1016/j.neuropharm.2017.11.019 10.1089/ars.2017.7003 10.1016/j.bbi.2017.08.006 10.1038/tp.2013.92 10.1073/pnas.1013660108 10.15252/embj.201696056 10.1002/ana.23727 10.1016/j.cub.2003.10.031 10.1038/nature06161 10.1038/nature09932 10.1016/j.cellsig.2014.04.009 10.1016/j.bbi.2015.07.015 10.1016/j.neuropharm.2018.02.024 10.1002/mnfr.201200809 10.1523/JNEUROSCI.1569-12.2012 10.1016/j.bbi.2017.03.003 10.1038/sj.emboj.7600244 10.1021/jf505050c 10.1155/2017/9340610 Zhang K., 2018, Role of MCP‐1 and CCR2 in ethanol‐induced neuroinflammation and neurodegeneration in the developing brain, J. Neuroinflammation, 15, 197, 10.1186/s12974-018-1241-2 10.1016/j.bbi.2018.02.015 10.1523/JNEUROSCI.1685-15.2015 10.1111/cns.12350 10.1016/j.intimp.2018.03.036 10.1089/ars.2013.5587 10.1007/s12035-014-8866-7 J.Zhu K.Liu K.Huang Y.Gu Y.Hu S.Pan Z.Ji.Metformin improves neurologic outcome via AMP‐Activated protein kinase‐mediated autophagy activation in a rat model of cardiac arrest and resuscitation.J. Am. Heart Assoc.2018;7