Antibiotic use in chicken farms in northwestern China

Springer Science and Business Media LLC - Tập 9 - Trang 1-9 - 2020
Jingyi Xu1,2, Rassamee Sangthong2, Edward McNeil2, Rong Tang1, Virasakdi Chongsuvivatwong2
1Public Health and Management Faculty, Ningxia Medical University, Yinchuan, China
2Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand

Tóm tắt

Misuse of antibiotics in food animals contributes to an increase of antibiotic resistant bacteria transmitting to humans. China is the largest producer and user of antibiotics in the world, of which animals share more than half of the total consumption. This study aimed to explore Chinese farmer’s practice of antibiotic use and the factors associated with their use. In this cross-sectional survey, we interviewed farmers from 88 chicken farms in northwestern China. We defined two kinds of misuse: 1) using antibiotics in the Chinese prohibited list, and 2) using antibiotics within the recommended withdrawal period. Factor analysis was used to select farmers’ knowledge variables and multinomial logistic regression was used to determine factors associated with antibiotic misuse. All the participating farmers used antibiotics on their farms. Amoxicillin was the most common antibiotic used (76.5%), followed by norfloxacin, ofloxacin, ceftriaxone and oxytetracycline. 75% of farmers used antibiotics in the prohibited list while 14.8% continued to use antibiotics during the withdrawal period. Hierarchical cluster analysis revealed three patterns of antibiotic use: 1) excessive use of non-prohibited and prohibited antibiotics or an excessive user, 2) low use of a few types of non-prohibited and moderate use of prohibited antibiotics or a low user, 3) multiple use of a variety (≥ 7 types) of non-prohibited and prohibited antibiotics or a moderate user. Farmers from medium size, family-based farms, those with a low education level and low income were more likely to misuse antibiotics. Prior formal agricultural training was associated with reducing multiple types of antibiotic use. There was a huge gap between policy and reinforcement causing antibiotic misuse in the study community. Antibiotics are commonly used on chicken farms; misuse of antibiotics is high; improvement in farm sanitation, education on antibiotic use for farmers and veterinarians/pharmacists and enforcement of the regulations may reduce antibiotic use on chicken farms in China.

Tài liệu tham khảo

Krishnasamy V, Otte J, Silbergeld E. Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob Resist Infect Control. 2015;4:9. Hvistendahl M. Public health. China takes aim at rampant antibiotic resistance. Science. 2012;336(6083):795. Zhang Q-Q, Ying G-G, Pan C-G, Liu Y-S, Zhao J-L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol. 2015;49(11):6772–82. Vieira AR, Collignon P, Aarestrup FM, McEwen SA, Hendriksen RS, Hald T, et al. Association between antimicrobial resistance in Escherichia coli isolates from food animals and blood stream isolates from humans in Europe: an ecological study. Foodborne Pathog Dis. 2011;8(12):1295–301. WHO. Antibiotic resistance: Multi-country public awareness survey. 2015. Report No.: 9241509813. Available from: http://www.who.int/drugresistance/en/. Maron DF, Smith TJ, Nachman KE. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Global Health. 2013;9:48. Xiao Y, Zhang J, Zheng B, Zhao L, Li S, Li L. Changes in Chinese policies to promote the rational use of antibiotics. PLoS Med. 2013;10(11):e1001556. Ministry of Agriculture and Rural Affairs. Ministry of Agriculture Announcement 176, 193,278,560,1519,2292,2428,2638. Beijing. (2001-2018) [cited 2019 Nov 20th]. Available from: http://www.moa.gov.cn/nybgb/. Accessed 20 Nov 2019. State Council. State Council Announcement 666: Regulations on administration of veterinary drugs. Beijing: 2016 [cited 2019 Nov 20th]. Available from: http://www.moa.gov.cn/govpublic/SYJ/201812/t20181214_6164972.htm. Accessed 20 Nov 2019. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci. 2015;112(18):5649–54. Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: a review. Front Vet Sci. 2017;4:126. Song X, Xie J, Zhang M, Zhang Y, Li J, Huang Q, et al. Simultaneous determination of eight cyclopolypeptide antibiotics in feed by high performance liquid chromatography coupled with evaporation light scattering detection. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1076:103–9. Sirdar MM, Picard J, Bisschop S, Gummow B. A questionnaire survey of poultry layer farmers in Khartoum state, Sudan, to study their antimicrobial awareness and usage patterns. Onderstepoort J Vet Res. 2012;79(1):E1–8. Om C, McLaws ML. Antibiotics: practice and opinions of Cambodian commercial farmers, animal feed retailers and veterinarians. Antimicrob Resist Infect Control. 2016;5:42. Output of Major Livestock Products by City and County in Ningxia Province [Internet]. 2018 [cited Nov 20th, 2019]. Available from: http://nxdata.com.cn/files_nx_pub/html/tjnj/2018/indexfiles/indexch.htm?1=1. Accessed 20 Nov 2019. Lauritsen J, Bruus M. EpiData Entry (version 3.1). A comprehensive tool for validated entry and documentation of data. Odense: The EpiData Association; 2017. p. 270108. Ministry of Agriculture and Rural Affairs. Ministry of Agriculture Noticement (2017) 22. Beijing: 2017 [cited 2019 Nov 20th]. Available from: http://www.moa.gov.cn/govpublic/SYJ/201706/t20170623_5726086.htm. Accessed 20 Nov 2019. FDA U. General principles for evaluating the safety of compounds used in food-producing animals. 2006. R Core Team. R: a language and environment for statistical computing. In: R Foundation for statistical computing. Vienna; 2018. URL https://www.R-project.org/. Carrique-Mas JJ, Trung NV, Hoa NT, Mai HH, Thanh TH, Campbell JI, et al. Antimicrobial usage in chicken production in the Mekong Delta of Vietnam. Zoonoses Public Health. 2015;62(Suppl 1):70–8. Wongsuvan G, Wuthiekanun V, Hinjoy S, Day NP, Limmathurotsakul D. Antibiotic use in poultry: a survey of eight farms in Thailand. Bull World Health Organ. 2018;96(2):94–100. Alimentarius C. Code of practice to minimize and contain antimicrobial resistance. CAC/RCP 61–2005 www codexalimentarius net/download/standards/10213/CXP_061e pdf. 2005. Available from: www.fao.org/input/download/standards/10213/CXP_061e.pdf. Lhermie G, Grohn YT, Raboisson D. Addressing Antimicrobiol resistance: an overview of priority actions to prevent suboptimal antimicrobial use in food-animal production. Front Microbiol. 2017;7:11. Guetiya Wadoum RE, Zambou NF, Anyangwe FF, Njimou JR, Coman MM, Verdenelli MC, et al. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br Poult Sci. 2016;57(4):483–93. WHO. Integrated surveillance of antimicrobial resistance in foodborne bacteria: application of a One health approach. 2017. Available from: http://who.int/foodsafety/areas_work/antimicrobial-resistance/en/. Khan AA, Randhawa MA, Butt MS, Nawaz H. Impact of various processing techniques on dissipation behavior of antibiotic residues in poultry meat. J Food Process Preserv. 2016;40(1):76–82. Christian A, Vivian Etsiapa B, Crystal Ngofi Z, Frank BO. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. IntechOpen. 2018; doi: https://doi.org/10.5772/intechopen.79371. Available from: https://www.intechopen.com/online-first/antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance. Lu Y, Zhao H, Sun J, Liu Y, Zhou X, Beier RC, et al. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in eastern China. PLoS One. 2014;9(5):e96050. Huang TM, Lin TL, Wu CC. Antimicrobial susceptibility and resistance of chicken Escherichia coli, Salmonella spp., and Pasteurella multocida isolates. Avian Dis. 2009;53(1):89–93. WHO. Antimicrobial resistance global report on surveillance. Geneva; 2014. Available from: https://www.who.int/drugresistance/en/ Teillant A, Brower CH, Laxminarayan R. Economics of Antibiotic Growth Promoters in Livestock. In: Rausser GC, editor. Annual Review of Resource Economics, Vol 7. Annual Review of Resource Economics. 7. Palo Alto: Annual Reviews; 2015. p. 349–74. Liu Q, Li J, Song X, Zhang M, Li E, Gao F, et al. Simultaneous determination of aminoglycoside antibiotics in feeds using high performance liquid chromatography with evaporative light scattering detection. RSC Adv. 2017;7:1251–9. Vandenberg LN. Low-dose effects of hormones and endocrine disruptors. Vitam Horm. 2014;94:129-65. https://doi.org/10.1016/B978-0-12-800095-3.00005-5. Strom G, Boqvist S, Albihn A, Fernstrom LL, Djurfeldt AA, Sokerya S, et al. Antimicrobials in small-scale urban pig farming in a lower middle-income country - arbitrary use and high resistance levels. Antimicrob Resist Infect Control. 2018;7:11. Rousham EK, Unicomb L, Islam MA. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and one health approaches. Proc R Soc B-Biol Sci. 2018;285(1876):9. O’Neill J. Review on antimicrobial resistance antimicrobial resistance: tackling a crisis for the health and wealth of nations. London; 2014. Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf King LJ, Anderson LR, Blackmore CG, Blackwell MJ, Lautner EA, Marcus LC, et al. Executive summary of the AVMA one health initiative task force report. J Am Vet Med Assoc. 2008;233(2):259–61. Statistical Yearbook of the Food And Agricultural Organization for the United Nations. World food and agriculture. 2013. Available from: http://www.fao.org/3/i3107e/i3107e.pdf. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98. Tangcharoensathien V, Chanvatik S, Sommanustweechai A. Complex determinants of inappropriate use of antibiotics. Bull World Health Organ. 2018;96(2):141–4. Chauvin C, Croisier A, Tazani F, Balaine L, Eono F, Salaun-Huneau A, et al. Utilisation des antibiotiques en filière cunicole: Enquête en élevages 2009–2010. In: Journées de la Recherche cunicole; 2011. p. 22–3. Schulze-Geisthovel SV, Tappe EV, Schmithausen RM, Lepkojis J, Rottgen K, Petersen B. Survey on the risk awareness of german pig and cattle farmers in relation to dealing with MRSA and antibiotics. Infect Ecol Epidemiol. 2016;6:29817.