On the stability and uniqueness of the flow of a fluid through a porous medium
Tóm tắt
In this short note, we study the stability of flows of a fluid through porous media that satisfies a generalization of Brinkman’s equation to include inertial effects. Such flows could have relevance to enhanced oil recovery and also to the flow of dense liquids through porous media. In any event, one cannot ignore the fact that flows through porous media are inherently unsteady, and thus, at least a part of the inertial term needs to be retained in many situations. We study the stability of the rest state and find it to be asymptotically stable. Next, we study the stability of a base flow and find that the flow is asymptotically stable, provided the base flow is sufficiently slow. Finally, we establish results concerning the uniqueness of the flow under appropriate conditions, and present some corresponding numerical results.
Tài liệu tham khảo
Brinkman H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1947)
Brinkman H.C.: On the permeability of the media consisting of closely packed porous particles. Appl. Sci. Res. A 1, 81–86 (1947)
Darcy H.: La Fontaines Publiques de La Ville de Dijon. Victor Dalmont, Paris (1846)
Forchheimer P.: Wasserbewegung durch Boden. Zeits. V. deutsch. Ing 45, 1782–1788 (1901)
Munaf D., Lee D., Wineman A.S., Rajagopal K.R.: A boundary value problem in groundwater motion analysis-comparisons based on Darcy’s law and the continuum theory of mixtures. Math. Model. Methods Appl. Sci. 3, 231–248 (1993)
Subramaniam S.C., Rajagopal K.R.: A note on the ow through porous solids at high pressures. Comput. Math. Appl. 53, 260–275 (2007)
Kannan K., Rajagopal K.R.: Flow through porous media due to high pressure gradients. Appl. Math. Comput. 199, 748–759 (2008)
Rajagopal K.R.: Hierarchy of models for the flow of fluids through porous media. Math. Model. Methods Appl. Sci. 17, 215–252 (2007)
Truesdell, C.: Sulle basi della termomeccanica. Rend. Accad. Lincei 22, 33–38 and 158–166 (1957)
Bowen, R.M.: Mechanics of mixtures. In: Eringen, A.C. Continuum Physics, Vol III., pp. 1–127. Academic Press, New York (1976)
Atkin R.J., Craine R.E.: Continuum theory of mixtures: basic theory and historical developments. Q. J. Mech. Appl. Math. 29, 209–234 (1976)
Samohyl I.: Thermodynamics of Irreversible processes in Fluid Mixtures. Teubner-Texte zur Physik, Leipzig (1987)
Rajagopal K.R., Tao L.: Mechanics of Mixtures. World Scientific Press, Singapore (1995)
Johnson, G., Massoudi, M., Rajagopal, K.R.: A review of interaction mechanisms in fluid–solid flows. DOE Report, DOE/PETC/TR-90/9, Pittsburgh (1990)
Reynolds O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. A 186, 123–164 (1895)
Orr W.M.: The stability or instability of the steady motions of a perfect liquid and of a viscous fluid. Proc. R. Ir. Acad. 27, 9–138 (1907)
Synge S.L.: Hydrodynamical stability. Am. Math. Soc. 2, 227–269 (1938)
Kampede Feriet J.: Sur la decroissance de l’énergie cinétique d’un fluide visqueux incompressible occupant un domaine borné ayant pour frontière des parois solides fixes. Ann. Soc. Sci. Brux. 63, 35–46 (1949)
Berker R.: Inégalité vérifiée par l’énergie cinétique d’un fluide visqueux incompressible occupant un domaine spatial borné. Bull. Tech. Univ. Istanb. 2, 41–50 (1949)
Thomas T.Y.: On the stability of viscous fluids. Univ. Calif. Publ. Math. New Ser. 2, 13–43 (1944)
Hopf, E.: On non-linear partial differential equations. Lecture Series of the Symposium on Partial Differential Equations, University of California, June 20–July 1 1955, 7–11
Serrin J.: On the stability of viscous fluid motions. Arch. Ration. Mech. Anal. 3, 1–13 (1959)
Qin Y., Kaloni P.N.: Convective instabilities in anisotropic porous media. Stud. Appl. Math. 91, 189–204 (1994)
Qin Y., Kaloni P.N.: Steady convection in a porous medium based upon the Brinkman model. IMA J. Appl. Math. 48, 85–95 (1992)
Qin Y., Guo J., Kaloni P.N.: Double diffusive penetrative convection in a porous media. Int. Eng. Sci. 33, 303–312 (1995)
Guo J., Kaloni P.N.: Double diffusive convection in porous medium, non-linear stability and the Brinkman effect. Stud. Appl. Math. 94, 351–358 (1995)
Franchi F., Straughan B.: Structural stability for the Brinkman equation in porous media. Math. Methods Appl. Sci. 19, 1335–1347 (1996)
Richardson L.L., Straughan B.: Convection with temperature dependent viscosity in a porous medium: nonlinear stability and the Brinkman effect. Rend. Accad. Naz. Lincei 4, 223–230 (1993)
Oberbeck A.: Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem. 1, 271–292 (1879)
Oberbeck, A.: Uber die Bewegungsercheinungen der Atmosphere, Sitz. Ber. K. Preuss. Akad. Miss. 1888, 383–395
Boussinesq J.: Theorie Analytique de la Chaleur. Gauthier-Villars, Imprimeur- Libraire, Paris (1903)
Rajagopal K.R., Ruzicka M., Srinivasa A.R.: On the Oberbeck–Boussinesq equations. Math. Model. Methods Appl. Sci. 6, 1157–1167 (1996)
Rajagopal K.R., Saccomandi G., Vergori L.: A systematic approximation for the equations governing convection-diffusion in a porous medium. Nonlinear Anal. Real World Appl. 10, 2366–2375 (2010)
Straughan B.: Stability and wave motion in porous media. Appl. Math. Sci. Ser. 165. Springer, Berlin (2008)
Payne L.E., Weinberger H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)
Ladyzhenskaya O.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)
Rionero S.: Metodi variazionali per la stabilitá asintotica in media in magnetoidrodinamica. Ann. Mate. Pura Appl. 78, 339–364 (1968)
Dongarra J.J., Straughan B., Walker D.W.: Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399–434 (1996)
Hill, A.A., Straughan, B.: Stability of Poiseuille flow in a porous medium. In: Rannacher, R., Sequeira, A. (eds) Advances in Mathematical Fluid Mechanics, pp. 287–293. Springer, Berlin (2009)