Does severe soil drought have after-effects on arbuscular and ectomycorrhizal root colonisation and plant nutrition?
Tóm tắt
Arbuscular (AM) and ectomycorrhizas (EM) predominate in different soils. We hypothesise that also climatic factors affect directly their relative success and AM fungi (AMF) generally tolerate drought better than EM fungi (EMF). Here we tested the colonisation rates of soil-borne AMF and EMF after soil drought treatments. Forest and meadow soils were mixed to include AMF and EMF propagules. There were three soil treatments: soil moisture corresponding to 60% (control) or 10% in mass of maximum water retention, or air-dry. The bait plants were EM-forming silver birch (Betula pendula), dual-mycorrhiza forming grey alder (Alnus incana) and AM-forming white clover (Trifolium repens). After re-watering, bait plants were sown and grown in a growth chamber in favourable conditions. This way, host-plant responses to drought were eliminated. Previous soil drought decreased EM colonisation in alder. The spore formation by AMF in clover was negatively affected after the most severe soil drought treatment, suggesting slightly retarded AM formation. Soluble soil potassium concentrations were lower in drought-treated soils and this was reflected in birch foliar concentrations. The results provide some support to the hypothesised better drought tolerance of AMF than EMF propagules but further studies in milder drought and in other plant-fungus combinations are needed.
Tài liệu tham khảo
Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62. doi:10.1007/BF02183054
Arveby AS, Granhall U (1998) Occurrence and succession of mycorrhizas in Alnus incana. Swed J Agric Res 28:117–127
Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097
Boddy L, Büntgen U, Egli S, Gange AC, Heegaard E, Kirk PM, Mohammad A, Kauserud H (2014) Climate variation effects on fungal fruiting. Fungal Ecol 10:20–33. doi:10.1016/j.funeco.2013.10.006
Braunberger P, Abbott L, Robson A (1996) Infectivity of arbuscular mycorrhizal fungi after wetting and drying. New Phytol 134:673–684. doi:10.1111/j.1469-8137.1996.tb04933.x
Brundrett MC, Abbott LK (1994) Mycorrhizal fungus propagules in the jarrah forest. 1. Seasonal study of inoculum levels. New Phytol 127:539–546. doi:10.1111/j.1469-8137.1994.tb03972.x
Bücking H, Kuhn A, Schröder W, Heyser W (2002) The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex? J Exp Bot 53:1659–1669. doi:10.1093/jxb/erf011
Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245. doi:10.1007/s00572-004-0313-6
Cavagnaro TR (2016) Soil moisture legacy effects: impacts on soil nutrients, plants and mycorrhizal responsiveness. Soil Biol Biochem 95:173–179. doi:10.1016/j.soilbio.2015.12.016
Chen Y, Brundrett M, Dell B (2000) Effects of ectomycorrhizas and vesicular-arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol 146:545–556. doi:10.1046/j.1469-8137.2000.00663.x
Chen YT, Bogner C, Borken W, Stange CF, Matzner E (2011) Minor response of gross N turnover and N leaching to drying, rewetting and irrigation in the topsoil of a Norway spruce forest. Eur J Soil Sci 62:709–717. doi:10.1111/j.1365-2389.2011.01388.x
Clark R, Zeto S (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902. doi:10.1080/01904160009382068
Cudlín P, Kieliszewska-Rokicka B, Rudawska M, Grebenc T, Alberton O, Lehto T, Bakker MR, Børja I, Konôpka B, Leski T, Kraigher H, Kuyper TW (2007) Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosyst 141:406–425. doi:10.1080/11263500701626028
Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann S (2014) Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol 201:951–960. doi:10.1111/nph.12603
Gehring CA, Mueller RC, Whitham TG (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149:158–164. doi:10.1007/s00442-006-0437-9
Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x
Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162. doi:10.1080/00380768.2015.1106923
Halonen O, Tulkki H, Derome J (1983) Nutrient analysis methods. Finnish Forest Research Institute Research Papers 121:1–28
Heiskanen J (1988) Metsämaan vedenpidätyskyvystä ja sen suhteista eräisiin kasvupaikasta mitattuihin tunnuksiin [Water retention capacity of forest soil and its relation to some site characteristics]. Licentiate Thesis, University of Helsinki, Department of Silviculture (In Finnish). doi: 10.13140/RG.2.2.11963.21283
Heiskanen J, Mäkitalo K (2002) Soil water-retention characteristics of Scots pine and Norway spruce forest sites in Finnish Lapland. Forest Ecol Manag 162:137–152. doi:10.1016/S0378-1127(01)00503-5
IPCC (2013) Climate change 2013: the physical science basis. IPCC, Geneva
Jasper DA, Abbott LK, Robson AD (1989) Hyphae of a vesicular arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol 112:101–107. doi:10.1111/j.1469-8137.1989.tb00314.x
Kilpeläinen J, Vestberg M, Repo T, Lehto T (2016) Arbuscular and ectomycorrhizal root colonisation and plant nutrition in soils exposed to freezing temperatures. Soil Biol Biochem 99:85–93. doi:10.1016/j.soilbio.2016.04.025
Lehto T (1992) Effect of drought on Picea sitchensis seedlings inoculated with mycorrhizal fungi. Scand J Forest Res 7:177–182. doi:10.1080/02827589209382710
Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90. doi:10.1007/s00572-010-0348-9
Lilleskov EA, Bruns TD, Dawson TE, Camacho FJ (2009) Water sources and controls on water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought. New Phytol 182:483–494. doi:10.1111/j.1469-8137.2009.02775.x
Lodge DJ (1989) The influence of soil-moisture and flooding on formation of VA-endo- and ectomycorrhizae in Populus and Salix. Plant Soil 117:243–253. doi:10.1007/BF02220718
Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59:325–334. doi:10.1139/b81-045
Querejeta JI, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64. doi:10.1007/s00442-002-1078-2
Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 90:649–662. doi:10.1890/07-1696.1
Ramos MLG, Gordon AJ, Minchin FR, Sprent JI, Parsons R (1999) Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.) Ann Bot-London 83:57–63
Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391. doi:10.1007/BF01972080
Rennenberg H (1999) The significance of ectomycorrhizal fungi for sulfur nutrition of trees. Plant Soil 215:115–122. doi:10.1023/A:1004459523021
Sardans J, Peñuelas J (2015) Potassium: a neglected nutrient in global change. Glob Ecol Biogeogr 24:261–275. doi:10.1111/geb.12259
Sridhara S, Thimmegowda S, Prasad TG (1995) Effect of water regimes and moisture stress at different growth-stages on nodule dynamics, nitrogenase activity and nitrogen-fixation in soybean (Glycine max (L.) Merrill). J Agron Crop Sci 174:111–115. doi:10.1111/j.1439-037X.1995.tb00201.x
Tommerup IC, Abbott LK (1981) Prolonged survival and viability of VA mycorrhizal hyphae after root death. Soil Biol Biochem 13:431–433. doi:10.1016/0038-0717(81)90090-0
Van der Heijden EW, Kuyper TW (2001) Laboratory experiments imply the conditionality of mycorrhizal benefits for Salix repens: role of pH and nitrogen to phosphorus ratios. Plant Soil 228:275–290. doi:10.1023/A:1004850423794
Zhang J, George E (2010) Effect of the ectomycorrhizal fungus Paxillus involutus on growth and cation (potassium, calcium, and magnesium) nutrition of Pinus sylvestris L. in semi-hydroponic culture. J Plant Nutr 33:736–751. doi:10.1080/01904160903575956