Inferring malaria parasite population structure from serological networks

Proceedings of the Royal Society B: Biological Sciences - Tập 276 Số 1656 - Trang 477-485 - 2009
Caroline O. Buckee1,2,3, Peter C. Bull4,3, Sunetra Gupta1
1Department of Zoology, University of OxfordTinbergen Building, South Parks Road, Oxford OX1 3PS, UK
2Santa Fe Institute1399 Hyde Park Road, Santa Fe, NM 87501, USA
3Wellcome Collaborative Research Program, KEMRIKilifi 80108, Kenya
4Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of OxfordCCVTM, Oxford OX3 7LJ, UK

Tóm tắt

The malaria parasite Plasmodium falciparum is characterized by high levels of genetic diversity at antigenic loci involved in virulence and immune evasion. Knowledge of the population structure and dynamics of these genes is important for designing control programmes and understanding the acquisition of immunity to malaria; however, high rates of homologous and non-homologous recombination as well as complex patterns of expression within hosts have hindered attempts to elucidate these structures experimentally. Here, we analyse serological data from Kenya using a novel network technique to deconstruct the relationships between patients' immune responses to different parasite isolates. We show that particular population structures and expression patterns produce distinctive signatures within serological networks of parasite recognition, which can be used to discriminate between competing hypotheses regarding the organization of these genes. Our analysis suggests that different levels of immune selection occur within different groups of the same multigene family leading to mixed population structures.

Từ khóa


Tài liệu tham khảo

10.1371/journal.ppat.0040042

Benta M, 2005, Studying communication networks with Agna 2.1, Cognition Brain Behav, 9, 567

10.1038/nm0398-358

Bull P.C, 1999, Antibody recognition of Plasmodium falciparum erythrocyte surface antigens in Kenya: evidence for rare and prevalent variants, Infect. Immun, 67, 733, 10.1128/IAI.67.2.733-739.1999

10.1086/315652

10.1371/journal.ppat.0010026

10.1111/j.1365-2958.2008.06248.x

Butts C. 2007 SNA: tools for social network analysis . R package version 1.5. See http://erzuli.uci.edu/R.stuff.

Butts C. Handcock M. S. & Hunter D. H. 2008 Network: classes for relational data. R package version 1.3. See http://statnetproject.org.

10.1128/IAI.71.2.597-604.2003

10.1016/j.biosystems.2007.09.004

10.1371/journal.ppat.0020124

10.1088/1478-3975/2/2/001

10.1016/S0166-6851(02)00038-5

10.4269/ajtmh.1989.41.259

10.1016/j.meegid.2004.10.005

10.1038/35039531

10.1038/nature01097

Giha H.A, 1999, Nine-year longitudinal study of antibodies to variant antigens on the surface of Plasmodium falciparum-infected erythrocytes, Infect. Immun, 67, 4092, 10.1128/IAI.67.8.4092-4098.1999

10.1038/nm0496-437

10.1126/science.280.5365.912

10.1038/6560

10.1046/j.1365-2958.2002.03085.x

10.1016/j.molbiopara.2003.11.016

10.1016/0035-9203(93)90097-A

10.1084/jem.20040274

10.1046/j.1365-2958.2003.03814.x

10.1186/1471-2164-8-45

10.1128/EC.00173-07

10.1128/AAC.01216-06

10.1186/1475-2875-2-27

10.1186/1475-2875-4-21

10.1016/j.jmb.2003.09.049

10.1126/science.2417315

Matlab 1997 Matlab v. R2007a. Natick MA: The Mathworks Inc.

10.1126/science.298.5594.824

10.1126/science.1089167

10.1128/IAI.72.6.3531-3535.2004

R Core Development Team R: a language and environment for statistical computing. 2008 Vienna Austria:R Foundation for Statistical Computing.

10.1038/nature02486

10.1186/1475-2875-7-18

10.1128/IAI.02073-05

10.1016/S0166-6851(00)00286-3

10.1016/S0166-6851(99)00106-1