Genetic evaluation of relationship between mutations in rpoB and resistance of Mycobacterium tuberculosis to rifampin

BMC Microbiology - Tập 9 Số 1 - 2009
Anna Żaczek1, Anna Brzostek1, Ewa Augustynowicz‐Kopeć2, Zofia Zwolska2, Jarosław Dziadek1
1Institute for Medical Biology, Polish Academy of Sciences, Lodz, Poland
2Department of Microbiology, National Research Institute of Tuberculosis and Lung Diseases, Warsaw, Poland

Tóm tắt

AbstractBackgroundRifampin is a first line antituberculosis drug active against bacilli in logarithmic and stationary phase, which interferes with RNA synthesis by binding to bacterial RNA polymerase. Tubercle bacilli achieve resistance to rifampin by accumulation of mutations in a short-81 bp region of therpoBgene. Among many mutations identified in therpoB gene, few were verified by molecular genetic methods as responsible for resistance to rifampin (RMP).ResultsIn this study eight different mutations identified in an 81 bp section of a "hot spot" region of therpoB gene of RMP resistantMycobacterium tuberculosisclinical strains were evaluated in respect to drug resistance. It was found that: mutations in positions 526 (H/D), 516 (D/V) and 531 (S/L) result in high level resistance to rifampin; mutations in positions 516 (D/Y), 515 (M/I), 510 (Q/H) or a double mutation in codons 512 (S/I) and 516 (D/G) relate to low level of resistance. GenerpoB carrying mutations in codon 513 (Q/L) introduced into anM. tuberculosislaboratory strain did not cause resistance to rifampin, however the same gene introduced into two different clinical strains did, with the level of resistance depending on the host strain.ConclusionMutations in an 81 bp "hot spot" region of therpoBofM. tuberculosislead to different levels of resistance to rifampin. Some mutations in this "hot spot" region ofrpoBrequire a specific genetic background for the host strain to develop resistance to rifampin. Therefore, the identification of such mutations in a clinicalM. tuberculosisstrain is not enough to classify the given strain as resistant to rifampin.

Từ khóa


Tài liệu tham khảo

Raviglione M: XDR-TB: entering the post-antibiotic era?. Int J Tuberc Lung Dis. 2006, 10: 1185-87.

Ormerod LP: Directly observed therapy (DOT) for tuberculosis: why, when, how and if?. Thorax. 1999, 54 Suppl 2: S42-S45.

Mitchison DA, Nunn AJ: Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis. 1986, 133: 423-430.

Espinal MA, Dye C, Raviglione M, Kochi A: Rational 'DOTS plus' for the control of MDR-TB. Int J Tuberc Lung Dis. 1999, 3: 561-3.

WHO Geneva Switzerland, World Health Organization: Anti-tuberculosis drug resistance in the world. The WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance (WHO/TB/97.229). 1997, WHO Geneva Switzerland

WHO Geneva Switzerland, World Health Organization: Anti-tuberculosis drug resistance in the world. Third Global Report. The WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance (WHO/CDC/TB/2004). 2004, WHO Geneva Switzerland

ASM Press Washington DC, Zhang Y, Vilcheze C, Jacobs WR: Mechanisms of drug resistance in Mycobacterium tuberculosis. Tuberculosis and the Tubercle Bacillus. 2005, ASM Press Washington DC, 115-140.

Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T: Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993, 341: 647-50. 10.1016/0140-6736(93)90417-F.

Musser JM: Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev. 1995, 8: 496-514.

Williams DL, Waguespack C, Eisenach K, Crawford JT, Portaels F, Salfinger M, Nolan CM, Abe C, Sticht-Groh V, Gillis TP: Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother. 1994, 38: 2380-6.

Caoili JC, Mayorova A, Sikes D, Hickman L, Plikaytis BB, Shinnick TM: Evaluation of the TB-Biochip oligonucleotide microarray system for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol. 2006, 44: 2378-81. 10.1128/JCM.00439-06.

Sajduda A, Brzostek A, Popławska M, Augustynowicz-Kopec E, Zwolska Z, Niemann S, Dziadek J, Hillemann D: Molecular characterisation of rifampin-resistant Mycobacterium tuberculosis starins isolated in Poland. J Clin Microbiol. 2004, 42: 2425-31. 10.1128/JCM.42.6.2425-2431.2004.

ASM Press Washington DC, Zhang Y, Telenti A: Genetics of drug resistance in Mycobacterium tuberculosis. Molecular Genetics of Mycobacteria. 2000, ASM Press Washington DC, 235-253.

Williams DL, Spring L, Collins L, Miller LP, Heifets LB, Gangadharam PR, Gillis TP: Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1998, 42: 1853-57.

Augustynowicz-Kopec E, Zwolska Z, Jaworski A, Kostrzewa E, Klatt M: Drug resistant tuberculosis in Poland in 2000: second national survey and comparison with the 1997 survey. Int J Tuberc Lung Dis. 2003, 7: 1-7.

Cold Spring Harbor Laboratory Press, Sambrook J, Russel DW: Molecular Cloning: A Laboratory Manual. 2001, Cold Spring Harbor Laboratory Press

Collins LA, Franzblau SG: Microplate Alamar Blue Assay versus BACTEC 460 system for hight-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. 1997, 41: 1004-09.

Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH: Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the Microplate Alamar Blue Assay. J Clin Microbiol. 1998, 36: 362-6.

Reis RS, Neves I, Lourenco SLS, Fonseca LS, Lourenco MCS: Comparison of Flow Cytometric and Alamar Blue Test with the Proportional Method for testing susceptibility of Mycobacterium tuberculosis to rifampin and isoniazid. J Clin Microbiol. 2004, 42: 2247-48. 10.1128/JCM.42.5.2247-2248.2004.

Taniguchi H, Aramaki H, Nikaido Y, Mizuguchi Y, Nakamura M, Koga T, Yoshida S: Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol Letters. 1996, 144: 103-08. 10.1111/j.1574-6968.1996.tb08515.x.

Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, Maesaki S, Tomono K, Tashiro T, Kohno S: Detection between antimicrobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicrob Chemother. 1998, 42: 621-28. 10.1093/jac/42.5.621.

Chan RCY, Hui M, Chan EWC, Au TK, Chin ML, Yip CK, AuYeang CKW, Yeung CYL, Kam KM, Yip PCW, Cheng AFB: Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. J Antimicrob Chemother. 2007, 59: 866-73. 10.1093/jac/dkm054.

Huitric E, Werngren J, Jureen P, Hoffner S: Resistance levels and rpoB gene mutations among in vitro-selected rifampin-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother. 2006, 50: 2860-62. 10.1128/AAC.00303-06.

Dziadek J, Madiraju MVVS, Rutherford SA, Atkinson MAL, Rajagopalan M: Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts. Microbiology. 2002, 148: 961-71.

Brzostek A, Sliwinski T, Rumijowska-Galewicz A, Korycka-Machala M, Dziadek J: Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. Microbiology. 2005, 151: 2393-2402. 10.1099/mic.0.27953-0.

Hui J, Gordon N, Kajioka R: Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother. 1977, 11: 773-79.

Guerrero C, Stockman L, Marchesi F, Bodmer T, Roberts GD, Telenti A: Evaluation of the rpoB gene in rifampicin-susceptible and -resistant Mycobacterium avium and Mycobacterium intracellulare. J Antimicrob Chemother. 1994, 33: 661-3. 10.1093/jac/33.3.661-a.

Bodmer T, Zurcher G, Imboden P, Telenti A: Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in vitro activity of rifampin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother. 1995, 35: 345-48. 10.1093/jac/35.2.345.

Moghazeh SL, Pan X, Arain T, Stover CK, Musser JM, Kreiswirth BN: Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother. 1996, 40: 2655-57.

Miller LP, Crafword JT, Shinnick TM: The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1994, 38: 805-11.

Hillemann D, Kubica T, Rusch-Gerdes S, Niemann S: Disequilibrium in distribution of resistance mutations among Mycobacterium tuberculosis Beijing and Non-Beijing strains isolated from patients in Germany. Antimicrob Agents Chemother. 2005, 49: 1229-31. 10.1128/AAC.49.3.1229-1231.2005.

Huang H, Jin Q, Chen X, Zhuang Y: Characterization of rpoB mutations in rifampicin-resistant Mycobacterium tuberculosis isolated in China. Tubecrulosis. 2000, 82: 79-83. 10.1054/tube.2002.0326.

Ozkutuk N, Gazi H, Surucuoglu S, Gunduz A, Ozbakkaloglu B: Characterization of rpoB mutations by Line Probe Assays in rifampicin-resistant Mycobacterium tuberculosis clinical isolates from the Aegean region in Turkey. Jpn J Infect Dis. 2007, 60: 211-13.

Bostanabad S, Bahrmand A, Titov LP, Taghikhani M: Identification of mutations in the rpoB encoding the RNA polymerase beta subunit in rifampicine-resistant Mycobacterium tuberculosis strains from Iran. Tuberk Toraks. 2007, 55: 370-77.

Brossier F, Veziris N, Truffot-Pernot C, Jarlier V, Sougakoff W: Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low- and high-level resistance. J Clin Microbiol. 2006, 44: 3659-3664. 10.1128/JCM.01054-06.

Gryadunov D, Mikhailovich V, Lapa S, Roudinskii N, Donnikov M, Pan'kov S, Markova O, Kuz'min A, Chernousova L, Skotnikova O, Moroz A, Zasedatelev A, Mirzabekov A: Evaluation of hybridisation on oligonucleotide microarrays for analysis of drug-resistant Mycobacterium tuberculosis. Clin Microbiol Infect. 2005, 11: 531-9. 10.1111/j.1469-0691.2005.01183.x.

Mikhailovich V, Lapa S, Gryadunov D, Sobolev A, Strizhkov B, Chernyh N, Skotnikova O, Irtuganova O, Moroz A, Litvinov V, Vladimirskii M, Perelman M, Chernousova L, Erokhin V, Zasedatelev A, Mirzabekov A: Identification of rifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips. J Clin Microbiol. 2001, 39: 2531-40. 10.1128/JCM.39.7.2531-2540.2001.

Hwang H, Chang C, Chang L, Chang S, Chang Y, Chen Y: Characterisation of rifampicin-resistant Mycobacterium tuberculosis in Taiwan. J Clin Microbiol. 2003, 52: 239-45.

Somoskovi A, Dormandy J, Mitsani D, Rivenburg J, Salfinger M: Use of smear-positive samples to assess the PCR-based genotype MTBDR assay for rapid, direct detection of the Mycobacterium tuberculosis complex as well as its resistance to isoniazid and rifampin. J Clin Microbiol. 2006, 44: 4459-63. 10.1128/JCM.01506-06.

Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Cillins D, de Lisle G, Jacobs WR: inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994, 263: 227-30. 10.1126/science.8284673.

Musser JM, Kapur V, Williams DL, Kreiswirth BN, van Soolingen D, van Embden JD: Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis. 1996, 173: 196-202.

Basso LA, Zheng R, Musser JM, Jacobs WR, Blanchard JS: Mechanisms of isoniazid resistance in Mycobacterium tuberculosis : enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J Infect Dis. 1998, 178: 769-75.

Fu LM, Fu-Liu CS: The gene expression data of Mycobacterium tuberculosis based on Affymetrix gene chips provide insight into regulatory and hypothetical genes. BMC Microbiol. 2007, 14: 7-37.

Karakousis PC, Yoshimatsu T, Lamichhane G, Woolwine SC, Nuermberger EL, Grosset J, Bishai WR: Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. J Exp Med. 2004, 200: 647-57. 10.1084/jem.20040646.

Korycka-Machała M, Rumijowska-Galewicz A, Dziadek J: The effect of ethambutol on mycobacterial cell wall permeability to hydrophobic compounds. Pol J Microbiol. 2005, 54: 5-11.