Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites

Nature Communications - Tập 8 Số 1
Kun Zhai1, Yan Wu2, Shipeng Shen1, Wei Tian2, Huibo Cao2, Yisheng Chai1, Bryan C. Chakoumakos2, Dashan Shang1, Liqin Yan1, Fangwei Wang1, Young Sun3
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3School of Physical Science, University of Chinese Academy of Sciences, Beijing, 100190, China

Tóm tắt

AbstractMultiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba0.4Sr1.6Mg2Fe12O22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba2-x Sr x Mg2Fe12O22 family with magnetization, ferroelectricity and neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.

Từ khóa


Tài liệu tham khảo

Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).

Cheong, S.-W. & Mostovoy, M. Multiferroic: a magnetic twist for ferroelectricity. Nat. Mater. 6, 21–29 (2007).

Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).

Dong, S., Liu, J.-M., Cheong, S.-W. & Ren, Z. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015).

Shang, D. S. et al. Toward the complete relational graph of fundamental circuit elements. Chin. Phys. B 24, 068402 (2015).

Shen, J. X. et al. Nonvolatile memory based on nonlinear magnetoelectric effects. Phys. Rev. Applied 6, 021001 (2016).

Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309 (2010).

Chappert, C., Fert, A. & Dau, F. N. V. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

Ramash, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

Sergienko, I. A. & Dagaotto, E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 0944343 (2006).

Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

Choi, Y. J. et al. Ferroelectricity in an Ising chain magnet. Phys. Rev. Lett. 100, 047601 (2008).

Oh, Y. S. et al. Non-hysteretic colossal magnetoelectricity in a collinear antiferromagnet. Nat. Commun. 5, 3201 (2014).

Wang, Y. et al. Unveiling hidden ferrimagnetism and giant magnetoelectricity in polar magnet Fe2Mo3O8. Sci. Rep. 5, 12268 (2015).

Aoyama, T. et al. Multiferroicity in orthorhombic RMnO3 (R=Dy, Tb, and Gd) under high pressure. Phys. Rev. B 91, 081107(R) (2015).

Lee, N. et al. Giant tunability of ferroelectric polarization in GdMn2O5. Phys. Rev. Lett. 110, 137203 (2013).

Kimura, T. Magnetoelectric Hexaferrite. Annu. Rev. Condens. Matter Phys. 3, 93–110 (2012).

Pullar, R. C. Hexagonal ferrites: a review of synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012).

Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a helimagnet with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 137201 (2005).

Ishiwata, S. et al. Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319, 1643 (2008).

Tokunaga, Y. et al. Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Phys. Rev. Lett. 105, 257201 (2010).

Shen, S. et al. Magnetic field reversal of electric polarization and magnetoelectric phase diagram of the hexaferrite Ba1.3Sr0.7Co0.9Zn1.1Fe10.8Al1.2O22. Appl. Phys. Lett. 104, 032905 (2014).

Kitagawa, Y. et al. Low-field magnetoelectric effect at room temperature. Nat. Mater. 9, 797–802 (2010).

Okumura, K. et al. Magnetism and magnetoelectricity of a U-type hexaferrite Sr4Co2Fe36O60. Appl. Phys. Lett. 98, 212504 (2011).

Chun, S. et al. Realization of giant magnetoelectricity in helimagnets. Phys. Rev. Lett. 104, 037204 (2010).

Momozawa, N., Yamaguchi, Y. & Mita, M. Magnetic structure change in Ba2Mg2Fe12O22. J. Phys. Soc. Jpn 5, 1350–1358 (1985).

Momozawa, N. et al. Cation distribution and helimagnetic structure of Ba2(Zn1-x Mg x )2Fe12O22 system as revealed by magnetization measurements and neutron diffraction. J. Phys. Soc. Jpn 70, 2724–2732 (2001).

Ishiwata, S. et al. Neutron diffraction studies on the multiferroic conical magnet Ba2Mg2Fe12O22. Phys. Rev. B 81, 174418 (2012).

Takagi, R. et al. Thermal generation of spin current in a multiferroic helimagnet. APL Mater. 4, 032502 (2016).

Nakajima, T. et al. Electromagnon excitation in the field-induced noncollinear ferromagnetic phase of Ba2Mg2Fe12O22 studied by polarized inelastic neutron scattering and terahertz time-domain optical spectroscopy. Phys. Rev. B 93, 035119 (2016).

Sagayama, H. et al. Two distinct ferroelectric phases in the multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Phys. Rev. B 80, 180419(R) (2009).

Chai, Y. S. et al. Electric control of large magnetization reversal in a helimagnet. Nat. Commun. 5, 4208 (2014).

Utsumi, S., Yoshiba, D. & Momozawa, N. Superexchange interactions of (Ba1-x Sr x )2Zn2Fe12O22 system studied by neutron diffraction. J. Phys. Soc. Jpn 76, 034704 (2007).

Taniguchi, K. et al. Ferroelectric polarization reversal by a magnetic field in multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Appl. Phys. Express 1, 031301 (2008).

Ishiwata, S. et al. Electric polarization induced by transverse magnetic field in the anisotropy-controlled conical helimagnet Ba2(Mg1-x Zn x )2Fe12O22. Phys. Rev. B 79, 180408(R) (2009).

Tokunaga, Y. et al. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 8, 838–844 (2012).

Hirose, S., Haruki, K., Ando, A. & Kimura, T. Mutual control of magnetization and electric polarization by electric and magnetic field at room temperature in Y-type BaSrCo2-x Zn x Fe11AlO22 ceramics. Appl. Phys. Lett. 104, 022907 (2014).

Shen, S., Chai, Y. & Sun, Y. Nonvolatile electric-field control of magnetization in a Y-type hexaferrite. Sci. Rep. 5, 8254 (2015).

Lee, H. B. et al. Field-induced incommensurate phase transition in the magnetoelectric hexaferrite Ba0.5Sr1.5Zn2(Fe1-x Al x )12O22. Phys. Rev. B 83, 144425 (2011).

Momozawa, N. & Yamaguchi, Y. Field-induced commensurate intermediate phases in helimagnet (Ba1-x Sr x )2Zn2Fe12O22 (x=0.748). J. Phys. Soc. Jpn 62, 1292–1304 (1993).

Momozawa, N., Mita, M. & Takei, H. Single crystal growth of (Ba1-x Sr x )2Zn2Fe12O22 from high temperature solution. J. Crystal Growth 83, 403–409 (1987).

Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction + FullProf. Physica B 192, 55 (1993).