Theory of MRI contrast in the annulus fibrosus of the intervertebral disc
Tóm tắt
Here we develop a three-dimensional analytic model for MR image contrast of collagen lamellae in the annulus fibrosus of the intervertebral disc of the spine, based on the dependence of the MRI signal on collagen fiber orientation.
High-resolution MRI scans were performed at 1.5 and 7 T on intact whole disc specimens from ovine, bovine, and human spines. An analytic model that approximates the three-dimensional curvature of the disc lamellae was developed to explain inter-lamellar contrast and intensity variations in the annulus. The model is based on the known anisotropic dipolar relaxation of water in tissues with ordered collagen. Simulated MRI data were generated that reproduced many features of the actual MRI data. The calculated inter-lamellar image contrast demonstrated a strong dependence on the collagen fiber angle and on the circumferential location within the annulus. This analytic model may be useful for interpreting MR images of the disc and for predicting experimental conditions that will optimize MR image contrast in the annulus fibrosus.
Tài liệu tham khảo
Stevens RL, Ryvar R, Robertson WR, O’Brien JP, Beard HK (1982) Biological changes in the annulus fibrosus in patients with low-back pain. Spine 7(3):223–233
Erkintalo MO, Salminen JJ, Alanen AM, Paajanen HE, Kormano MJ (1995) Development of degenerative changes in the lumbar intervertebral disk: results of a prospective MR imaging study in adolescents with and without low-back pain. Radiology 196(2):529–533
Natarajan RN, Williams JR, Andersson GBJ (2004) Recent advances in analytical modeling of lumbar disc degeneration. Spine 29(23):2733–2741
Iatridis JC, AP Gwynn I (2004) Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J Biomech 37(8):1165–1175
Guerin HA, Elliott DM (2006) Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. J Biomech 39(8):1410–1418
Nerurkar NL, Elliott DM, Mauck RL (2010) Mechanical design criteria for intervertebral disc tissue engineering. J Biomech 43(6):1017–1030
Ibarz E, Herrera A, Mas Y, Rodriguez-Vela J, Cegonino J, Puertolas S et al (2013) Development and kinematic verification of a finite element model for the lumbar spine: application to disc degeneration. Biomed Res Int 2013:705185
Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract 8(1):18–44
Boo S, Hogg JP (2010) How’s your disk? Illustrative glossary of degenerative disk lesions using standardized lexicon. Curr Probl Diagn Radiol 39(3):118–124
Cassidy JJ, Hiltner A, Baer E (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23(1):75–88
Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15(5):402–410
Guerin HL, Elliott DM (2007) Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J Orthop Res 25(4):508–516
Michalek AJ, Buckley MR, Bonassar LJ, Cohen I, Iatridis JC (2009) Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content. J Biomech 42(14):2279–2285
Elliott DM, Setton LA (2000) A linear material model for fiber-induced anisotropy of the anulus fibrosus. J Biomech Eng 122(2):173–179
Elliott DM, Setton LA (2001) Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J Biomech Eng 123(3):256–263
Li H, Wang Z (2006) Intervertebral disc biomechanical analysis using the finite element modeling based on medical images. Comput Med Imaging Graph 30(6–7):363–370
Ambard D, Cherblanc F (2009) Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation. Ann Biomed Eng 37(11):2256–2265
Jacobs NT, Smith LJ, Han WM, Morelli J, Yoder JH, Elliott DM (2011) Effect of orientation and targeted extracellular matrix degradation on the shear mechanical properties of the annulus fibrosus. J Mech Behav Biomed Mater 4(8):1611–1619
Majumdar S, Link TM, Steinbach LS, Hu S, Kurhanewicz J (2011) Diagnostic tools and imaging methods in intervertebral disk degeneration. Orthop Clin North Am 42(4):501–511
Hsu EW, Setton LA (1999) Diffusion tensor microscopy of the intervertebral disc anulus fibrosus. Magn Reson Med 41(5):992–999
Berendsen HJC (1962) Nuclear magnetic resonance study of collagen hydration. J Chem Phys 36:3297–3305
Rubenstein JD, Kim JK, Morova-Protzner I, Stanchev PL, Henkelman RM (1993) Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. Radiology 188(1):219–226
Xia Y, Farquhar T, Burton-Wurster N, Lust G (1997) Origin of cartilage laminae in MRI. J Magn Reson Imaging 7:887–894
Grunder W, Wagner M, Werner A (1998) MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique. Magn Reson Med 39(3):376–382
Xia Y, Moody JB, Alhadlaq H (2002) Orientational dependence of T2 relaxation in articular cartilage: A microscopic MRI (microMRI) study. Magn Reson Med 48(3):460–469
Fullerton GD, Rahal A (2007) Collagen structure: The molecular source of the tendon magic angle effect. J Magn Reson Imaging 25(2):345–361
Navon G, Eliav U, Demco DE, Blumich B (2007) Study of order and dynamic processes in tendon by NMR and MRI. J Magn Reson Imaging 25(2):362–380
Zheng S, Xia Y (2009) The collagen fibril structure in the superficial zone of articular cartilage by microMRI. Osteoarthritis Cartilage 17(11):1519–1528
Hardy PA (1996) Intervertebral disks on MR images: variation in signal intensity with the disk-to-magnetic field orientation. Radiology 200(1):143–147
O’Connell GD, Vresilovic EJ, Elliott DM (2007) Comparison of animals used in disc research to human lumbar disc geometry. Spine 32(3):328–333
Showalter BL, C. BJ, Martin JT, Beattie EE, Espinoza Orias AA, Schaer TP, et al. (2012) Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content. Spine 37(15):E900–E907
Wright AC, Lemdiasov R, Connick TJ, Bhagat YA, Magland JF, Song HK et al (2011) Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7 T. J Magn Reson 210(1):113–122
Eliav U, Komlosh ME, Basser PJ, Navon G (2014) Collagen composition and content-dependent contrast in porcine annulus fibrosus achieved by using double quantum and magnetization transfer filtered UTE MRI. Magn Reson Med 71(1):388–393
Szeverenyi NM, Bydder GM (2011) Dipolar anisotropy fiber imaging in a goat knee meniscus. Magn Reson Med 65(2):463–470
Yoder JH, Peloquin JM, Song G, Tustison NJ, Moon SM, Wright AC et al (2014) Internal three-dimensional strains in human intervertebral discs under axial compression quantified noninvasively by magnetic resonance imaging and image registration. J Biomech Eng 136(11):111008
Kasch R, Mensel B, Schmidt F, Drescher W, Pfuhl R, Ruetten S et al (2012) Percutaneous disc decompression with nucleoplasty–volumetry of the nucleus pulposus using ultrahigh-field MRI. PLoS ONE 7(7):e41497
Peng B, Hou S, Wu W, Zhang C, Yang Y (2006) The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur Spine J 15(5):583–587