Structural and piezoelectric properties of high-density (Bi0.5K0.5)TiO3–BiFeO3 ceramics

Journal of Applied Physics - Tập 108 Số 10 - 2010
Hiroki Matsuo1, Yuji Noguchi1, Masaru Miyayama1, Muneyasu Suzuki2, Akira Watanabe3, Shuji Sasabe3, Tomoatsu Ozaki4, Shigeo Mori4, Shuki Torii5, Takashi Kamiyama5
1The University of Tokyo 1 Research Center for Advanced Science and Technology, , 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8904, Japan
2National Institute of Advanced Industrial Science and Technology (AIST) 2 Advanced Manufacturing Research Institute, , AIST Tsukuba East 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
3Hosokawa Micron Corporation 3 , 1-9, Tajika, Shoudai, Hirakata-shi, Osaka 573-1132, Japan
4Osaka Prefecture University 4 Department of Materials Science, , Gakuen-cho 1-1, Sakai, Osaka 599-8531, Japan
5High Energy Accelerator Research Organization 5 , 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Tóm tắt

The crystal structures and dielectric, polarization, and piezoelectric properties of high-density x(Bi0.5K0.5)TiO3–(1−x)BiFeO3 ceramics were investigated. The results obtained using x-ray and neutron powder diffractions and transmission electron microscopy showed that a morphotropic phase boundary between the rhombohedral (ferroelectric) and pseudocubic (ferroelectric) phases is present in 0.4<x<0.43. Ceramics with x=0.4 exhibited a large remanent polarization of 52 μC/cm2 at 25 °C and their piezoelectric properties were maintained up to 300 °C. It is suggested that the presence of nanosized domains with a polar rhombohedral structure observed for x=0.4 is the origin of relaxor-like dielectric properties.

Từ khóa


Tài liệu tham khảo

1989, Science, 246, 1400, 10.1126/science.246.4936.1400

1999, J. Am. Ceram. Soc., 82, 797, 10.1111/j.1151-2916.1999.tb01840.x

2006, J. Ceram. Soc. Jpn., 114, 1089, 10.2109/jcersj.114.1089

2000, Phys. Rev. B, 61, 8687, 10.1103/PhysRevB.61.8687

2000, Phys. Rev. Lett., 84, 5423, 10.1103/PhysRevLett.84.5423

2006, Jpn. J. Appl. Phys., 45, 7422, 10.1143/JJAP.45.7422

1994, Appl. Phys. Lett., 65, 1522, 10.1063/1.112031

2007, J. Mater. Sci.: Mater. Electron., 18, 331, 10.1007/s10854-006-9023-5

2008, J. Am. Ceram. Soc., 91, 2878, 10.1111/j.1551-2916.2008.02548.x

1997, J. Appl. Phys., 82, 1804, 10.1063/1.365983

2006, Jpn. J. Appl. Phys., Part 1, 45, 7258, 10.1143/JJAP.45.7258

2006, J. Ceram. Soc. Jpn., 114, 241, 10.2109/jcersj.114.241

2006, Jpn. J. Appl. Phys., Part 1, 45, 7315, 10.1143/JJAP.45.7315

2006, Jpn. J. Appl. Phys., Part 1, 45, 7413, 10.1143/JJAP.45.7413

2006, Jpn. J. Appl. Phys., Part 1, 45, 7418, 10.1143/JJAP.45.7418

2006, Jpn. J. Appl. Phys., Part 1, 45, 7543, 10.1143/JJAP.45.7543

2006, Jpn. J. Appl. Phys., Part 1, 45, 7548, 10.1143/JJAP.45.7548

2006, Jpn. J. Appl. Phys., Part 1, 45, 7265, 10.1143/JJAP.45.7265

2007, J. Ceram. Soc. Jpn., 115, 17, 10.2109/jcersj.115.17

2007, Jpn. J. Appl. Phys., Part 1, 46, 7073, 10.1143/JJAP.46.7073

1990, Ferroelectrics, 106, 375, 10.1080/00150199008214612

1991, Jpn. J. Appl. Phys., Part 1, 30, 2236, 10.1143/JJAP.30.2236

2003, Jpn. J. Appl. Phys., Part 1, 42, 7401, 10.1143/JJAP.42.7401

1999, Jpn. J. Appl. Phys., Part 1, 38, 5564, 10.1143/JJAP.38.5564

2005, J. Cryst. Growth, 281, 364, 10.1016/j.jcrysgro.2005.03.068

2001, J. Eur. Ceram. Soc., 21, 1299, 10.1016/S0955-2219(01)00005-X

1994, Phys. Rev. B, 49, 11550, 10.1103/PhysRevB.49.11550

1994, J. Am. Ceram. Soc., 77, 2641, 10.1111/j.1151-2916.1994.tb04655.x

1996, J. Am. Ceram. Soc., 79, 1290, 10.1111/j.1151-2916.1996.tb08586.x

2007, Ferroelectrics, 358, 1021

2007, J. Electroceram., 19, 259, 10.1007/s10832-007-9035-4

2006, Jpn. J. Appl. Phys., Part 1, 45, 7409, 10.1143/JJAP.45.7409

2008, J. Appl. Phys., 103, 084121, 10.1063/1.2903498

2006, Jpn. J. Appl. Phys., Part 1, 45, 4493, 10.1143/JJAP.45.4493

1970, Solid State Commun., 8, 1073, 10.1016/0038-1098(70)90262-0

2005, Phys. Rev. B, 71, 014113, 10.1103/PhysRevB.71.014113

2006, Appl. Phys. Lett., 88, 262908, 10.1063/1.2218819

2004, Jpn. J. Appl. Phys., Part 1, 43, L647, 10.1143/JJAP.43.L647

2005, Phys. Rev. B, 71, 060401, 10.1103/PhysRevB.71.060401

2007, Appl. Phys. Lett., 91, 022907, 10.1063/1.2753390

1996, Jpn. J. Appl. Phys., Part 1, 35, 5104, 10.1143/JJAP.35.5104

1949, Phys. Rev., 75, 687, 10.1103/PhysRev.75.687

1954, Phys. Rev., 95, 690, 10.1103/PhysRev.95.690

1994, Phys. Rev. Lett., 73, 1861, 10.1103/PhysRevLett.73.1861

2006, Jpn. J. Appl. Phys., Part 1, 45, 7405, 10.1143/JJAP.45.7405

2007, Jpn. J. Appl. Phys., Part 1, 46, 7039, 10.1143/JJAP.46.7039

2005, Jpn. J. Appl. Phys., Part 1, 44, 5040, 10.1143/JJAP.44.5040

2008, J. Electroceram., 21, 296, 10.1007/s10832-007-9146-y

2009, J. Cryst. Growth, 311, 3626, 10.1016/j.jcrysgro.2009.05.031

2009, Ferroelectrics, 385, 1, 10.1080/00150190902889267

2000, J. Appl. Phys., 87, 855, 10.1063/1.371953

2006, J. Ceram. Soc. Jpn., 114, 97, 10.2109/jcersj.114.97

1971, J. Phys. Chem. Solids, 32, 1315, 10.1016/S0022-3697(71)80189-0

1996, J. Phys. Chem. Solids, 57, 1517, 10.1016/0022-3697(96)00022-4