The structure of NiN and PdN clusters: 4≤N≤23

Journal of Chemical Physics - Tập 97 Số 5 - Trang 3386-3398 - 1992
Mark S. Stave1, Andrew E. DePristo1
1Ames Laboratory—USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011

Tóm tắt

Stable geometrical structures of NiN and PdN clusters (N=4–23) are identified using a corrected effective medium (CEM) theory. Structural optimization is accomplished by simulated annealing using analytic derivatives to determine the interatomic forces. Unique structural features of these metal clusters are noted, especially in relation to the bulk and surface phases of these metals and to structures commonly associated with rare gas clusters. Elucidation of the general features of cluster growth leads to the principle that transition metal clusters generally maximize the minimum coordination of any atom. By contrast, rare gas clusters maximize the number of interatomic distances close to the optimal distance for the pairwise interaction between rare gas atoms. The latter can be interpreted as the packing of hard balls. Structural transformations between isomers of similar energy are also examined for selected sizes.

Từ khóa


Tài liệu tham khảo

1991, J. Chem. Phys., 94, 1882, 10.1063/1.459910

1990, J. Chem. Phys., 92, 2110, 10.1063/1.458045

1990, J. Chem. Phys., 92, 3813, 10.1063/1.457839

1990, J. Chem. Phys., 92, 254, 10.1063/1.458472

1990, J. Chem. Soc. Faraday Trans., 86, 2459, 10.1039/ft9908602459

1990, Catal. Lett., 4, 271, 10.1007/BF00765311

1990, J. Phys. Chem., 94, 2744, 10.1021/j100370a006

1987, Z. Phys. D, 7, 83, 10.1007/BF01436656

1985, J. Chem. Phys., 83, 2293, 10.1063/1.449321

1989, Philos. Mag. B, 60, 881, 10.1080/13642818908209749

1987, J. Chem. Phys., 87, 6166, 10.1063/1.453492

1979, Adv. Phys., 40, 49, 10.1002/9780470142592.ch2

1987, Adv. Chem. Phys., 69, 447

1986, Chem. Rev., 86, 539, 10.1021/cr00073a004

1986, Chem. Rev., 86, 1049, 10.1021/cr00076a005

1989, Phys. Rev. B, 39, 7441, 10.1103/PhysRevB.39.7441

1986, Phys. Rev. B, 33, 7983, 10.1103/PhysRevB.33.7983

1984, Phys. Rev. B, 29, 6443, 10.1103/PhysRevB.29.6443

1991, J. Chem. Phys., 94, 7376, 10.1063/1.460169

1987, Phys. Rev. B, 35, 7423, 10.1103/PhysRevB.35.7423

1991, Phys. Rev. Lett., 66, 2219, 10.1103/PhysRevLett.66.2219

1990, Phys. Rev. Lett., 64, 3155, 10.1103/PhysRevLett.64.3155

1987, J. Chem. Phys., 87, 4700, 10.1063/1.452834

1988, J. Chem. Phys., 88, 2596, 10.1063/1.454039

1989, J. Phys. Chem., 93, 1556, 10.1021/j100341a072

1989, Phys. Rev. B, 39, 9967, 10.1103/PhysRevB.39.9967

1990, J. Chem. Phys., 93, 4413, 10.1063/1.458724

1991, Int. Rev. Phys. Chem., 10, 1, 10.1080/01442359109353253

1991, Phys. Rev. B, 44, 8927, 10.1103/PhysRevB.44.8927

1991, J. Chem. Phys., 94, 751, 10.1063/1.460343

1990, J. Chem. Phys., 92, 5580, 10.1063/1.458491

1990, J. Chem. Phys., 92, 1510, 10.1063/1.458112

1992, Surf. Sci., 260, 116, 10.1016/0039-6028(92)90025-2

1990, Phys. Rev. A, 41, 5691, 10.1103/PhysRevA.41.5691

1986, Int. J. Quantum Chem., 29, 1077, 10.1002/qua.560290507

1957, Math. Gazette, 41, 81, 10.2307/3610579

1990, J. Am. Chem. Soc., 112, 7908, 10.1021/ja00178a010

1984, Phys. Rev. Lett., 53, 2390, 10.1103/PhysRevLett.53.2390

1988, Adv. Chem. Phys., 70, 45

1990, J. Chem. Phys., 93, 8745, 10.1063/1.459263

1959, Phys. Rev., 114, 687, 10.1103/PhysRev.114.687