High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors

BMC Medical Genomics - Tập 2 - Trang 1-15 - 2009
Peter M Haverty1, Lawrence S Hon1, Joshua S Kaminker1, John Chant2, Zemin Zhang1
1Department of Bioinformatics, Genentech Inc., South San Francisco, USA
2Department of Molecular Biology, Genentech, Inc., South San Francisco, USA

Tóm tắt

DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions. We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases. Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, PVT1, but not MYC, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression. These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes.

Tài liệu tham khảo

Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ: Cancer statistics, 2006. CA: a cancer journal for clinicians. 2006, 56 (2): 106-130. 10.3322/canjclin.56.2.106. Bernardini M, Lee CH, Beheshti B, Prasad M, Albert M, Marrano P, Begley H, Shaw P, Covens A, Murphy J, et al: High-resolution mapping of genomic imbalance and identification of gene expression profiles associated with differential chemotherapy response in serous epithelial ovarian cancer. Neoplasia. 2005, 7 (6): 603-613. 10.1593/neo.04760. Caserta D, Benkhalifa M, Baldi M, Fiorentino F, Qumsiyeh M, Moscarini M: Genome profiling of ovarian adenocarcinomas using pangenomic BACs microarray comparative genomic hybridization. Molecular Cytogenetics. 2008, 1 (1): 10-10.1186/1755-8166-1-10. Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-McCune K, Lu KH, Fishman D, et al: The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med. 2004, 10 (11): 1251-1256. 10.1038/nm1125. Gorringe KL, Jacobs S, Thompson ER, Sridhar A, Qiu W, Choong DY, Campbell IG: High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin Cancer Res. 2007, 13 (16): 4731-4739. 10.1158/1078-0432.CCR-07-0502. Kim SW, Kim JW, Kim YT, Kim JH, Kim S, Yoon BS, Nam EJ, Kim HY: Analysis of chromosomal changes in serous ovarian carcinoma using high-resolution array comparative genomic hybridization: Potential predictive markers of chemoresistant disease. Genes, chromosomes & cancer. 2007, 46 (1): 1-9. 10.1002/gcc.20384. Nakayama K, Nakayama N, Jinawath N, Salani R, Kurman RJ, Shih Ie M, Wang TL: Amplicon profiles in ovarian serous carcinomas. International journal of cancer. 2007, 120 (12): 2613-2617. 10.1002/ijc.22609. Nanjundan M, Nakayama Y, Cheng KW, Lahad J, Liu J, Lu K, Kuo WL, Smith-McCune K, Fishman D, Gray JW, et al: Amplification of MDS1/EVI1 and EVI1, located in the 3q26.2 amplicon, is associated with favorable patient prognosis in ovarian cancer. Cancer research. 2007, 67 (7): 3074-3084. 10.1158/0008-5472.CAN-06-2366. Nowee ME, Snijders AM, Rockx DA, de Wit RM, Kosma VM, Hamalainen K, Schouten JP, Verheijen RH, van Diest PJ, Albertson DG, et al: DNA profiling of primary serous ovarian and fallopian tube carcinomas with array comparative genomic hybridization and multiplex ligation-dependent probe amplification. The Journal of pathology. 2007, 213 (1): 46-55. 10.1002/path.2217. Park JT, Li M, Nakayama K, Mao TL, Davidson B, Zhang Z, Kurman RJ, Eberhart CG, Shih Ie M, Wang TL: Notch3 gene amplification in ovarian cancer. Cancer research. 2006, 66 (12): 6312-6318. 10.1158/0008-5472.CAN-05-3610. Snijders AM, Nowee ME, Fridlyand J, Piek JM, Dorsman JC, Jain AN, Pinkel D, van Diest PJ, Verheijen RH, Albertson DG: Genome-wide-array-based comparative genomic hybridization reveals genetic homogeneity and frequent copy number increases encompassing CCNE1 in fallopian tube carcinoma. Oncogene. 2003, 22 (27): 4281-4286. 10.1038/sj.onc.1206621. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, et al: Patterns of somatic mutation in human cancer genomes. Nature. 2007, 446 (7132): 153-158. 10.1038/nature05610. Haber DA, Settleman J: Cancer: drivers and passengers. Nature. 2007, 446 (7132): 145-146. 10.1038/446145a. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al: The consensus coding sequences of human breast and colorectal cancers. Science. 2006, 314 (5797): 268-274. 10.1126/science.1133427. Stephens P, Edkins S, Davies H, Greenman C, Cox C, Hunter C, Bignell G, Teague J, Smith R, Stevens C, et al: A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat Genet. 2005, 37 (6): 590-592. 10.1038/ng1571. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW: PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999, 21 (1): 99-102. 10.1038/5042. Zhang L, Huang J, Yang N, Liang S, Barchetti A, Giannakakis A, Cadungog MG, O'Brien-Jenkins A, Massobrio M, Roby KF, et al: Integrative genomic analysis of protein kinase C (PKC) family identifies PKCiota as a biomarker and potential oncogene in ovarian carcinoma. Cancer Res. 2006, 66 (9): 4627-4635. 10.1158/0008-5472.CAN-05-4527. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, Vivanco I, Lee JC, Huang JH, Alexander S, et al: Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proc Natl Acad Sci USA. 2007, 104 (50): 20007-20012. 10.1073/pnas.0710052104. Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, Thorne NP, Costa JL, Pinder SE, Wiel van de MA, Green AR, et al: High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol. 2007, 8 (10): R215-10.1186/gb-2007-8-10-r215. Nigro JM, Misra A, Zhang L, Smirnov I, Colman H, Griffin C, Ozburn N, Chen M, Pan E, Koul D, et al: Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer research. 2005, 65 (5): 1678-1686. 10.1158/0008-5472.CAN-04-2921. Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Borresen-Dale AL, Brown PO: Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA. 2002, 99 (20): 12963-12968. 10.1073/pnas.162471999. Zorn KK, Jazaeri AA, Awtrey CS, Gardner GJ, Mok SC, Boyd J, Birrer MJ: Choice of normal ovarian control influences determination of differentially expressed genes in ovarian cancer expression profiling studies. Clin Cancer Res. 2003, 9 (13): 4811-4818. Lin M, Wei LJ, Sellers WR, Lieberfarb M, Wong WH, Li C: dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics. 2004, 20 (8): 1233-1240. 10.1093/bioinformatics/bth069. Hupe P, Stransky N, Thiery JP, Radvanyi F, Barillot E: Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics. 2004, 20 (18): 3413-3422. 10.1093/bioinformatics/bth418. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C: Detection of large-scale variation in the human genome. Nat Genet. 2004, 36 (9): 949-951. 10.1038/ng1416. Diskin SJ, Eck T, Greshock J, Mosse YP, Naylor T, Stoeckert CJ, Weber BL, Maris JM, Grant GR: STAC: A method for testing the significance of DNA copy number aberrations across multiple array-CGH experiments. Genome research. 2006, 16 (9): 1149-1158. 10.1101/gr.5076506. Rouveirol C, Stransky N, Hupe P, Rosa PL, Viara E, Barillot E, Radvanyi F: Computation of recurrent minimal genomic alterations from array-CGH data. Bioinformatics (Oxford, England). 2006, 22 (7): 849-856. 10.1093/bioinformatics/btl004. Aguirre AJ, Brennan C, Bailey G, Sinha R, Feng B, Leo C, Zhang Y, Zhang J, Gans JD, Bardeesy N, et al: High-resolution characterization of the pancreatic adenocarcinoma genome. Proc Natl Acad Sci USA. 2004, 101 (24): 9067-9072. 10.1073/pnas.0402932101. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J R Statist Soc. 1995, 57 (1): 289-300. Hubbell E, Liu WM, Mei R: Robust estimators for expression analysis. Bioinformatics (Oxford, England). 2002, 18 (12): 1585-1592. 10.1093/bioinformatics/18.12.1585. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30 (1): 207-210. 10.1093/nar/30.1.207. Downey T: Analysis of a multifactor microarray study using Partek genomics solution. Methods in enzymology. 2006, 411: 256-270. 10.1016/S0076-6879(06)11013-7. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR: A census of human cancer genes. Nat Rev Cancer. 2004, 4 (3): 177-183. 10.1038/nrc1299. Wu TD, Watanabe CK: GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics (Oxford, England). 2005, 21 (9): 1859-1875. 10.1093/bioinformatics/bti310. Israeli O, Gotlieb WH, Friedman E, Korach J, Friedman E, Goldman B, Zeltser A, Ben-Baruch G, Rienstein S, Aviram-Goldring A: Genomic analyses of primary and metastatic serous epithelial ovarian cancer. Cancer genetics and cytogenetics. 2004, 154 (1): 16-21. 10.1016/j.cancergencyto.2004.02.006. Buffart TE, Coffa J, Hermsen MA, Carvalho B, Sijp van der JR, Ylstra B, Pals G, Schouten JP, Meijer GA: DNA copy number changes at 8q11-24 in metastasized colorectal cancer. Cell Oncol. 2005, 27 (1): 57-65. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, Johnson LA, et al: Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007, 450: 893-898. 10.1038/nature06358. Haverty PM, Fridlyand J, Li L, Getz G, Beroukhim R, Lohr S, Wu TD, Cavet G, Zhang Z, Chant J: High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes, chromosomes & cancer. 2008, 47 (6): 530-542. 10.1002/gcc.20558. Watanabe T, Imoto I, Katahira T, Hirasawa A, Ishiwata I, Emi M, Takayama M, Sato A, Inazawa J: Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers. Jpn J Cancer Res. 2002, 93 (10): 1114-1122. Collins C, Rommens JM, Kowbel D, Godfrey T, Tanner M, Hwang SI, Polikoff D, Nonet G, Cochran J, Myambo K, et al: Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc Natl Acad Sci USA. 1998, 95 (15): 8703-8708. 10.1073/pnas.95.15.8703. Chung CM, Man C, Jin Y, Jin C, Guan XY, Wang Q, Wan TS, Cheung AL, Tsao SW: Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells. Molecular carcinogenesis. 2005, 43 (3): 165-174. 10.1002/mc.20098. Fejzo MS, Dering J, Ginther C, Anderson L, Ramos L, Walsh C, Karlan B, Slamon DJ: Comprehensive analysis of 20q13 genes in ovarian cancer identifies ADRM1 as amplification target. Genes, chromosomes & cancer. 2008, 47 (10): 873-883. 10.1002/gcc.20592. Mittelstadt PR, Ashwell JD: Cyclosporin A-sensitive transcription factor Egr-3 regulates Fas ligand expression. Mol Cell Biol. 1998, 18 (7): 3744-3751. Guan Y, Kuo WL, Stilwell JL, Takano H, Lapuk AV, Fridlyand J, Mao JH, Yu M, Miller MA, Santos JL, et al: Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res. 2007, 13 (19): 5745-5755. 10.1158/1078-0432.CCR-06-2882. Beck-Engeser GB, Lum AM, Huppi K, Caplen NJ, Wang BB, Wabl M: Pvt1-encoded microRNAs in oncogenesis. Retrovirology. 2008, 5: 4-10.1186/1742-4690-5-4. Carramusa L, Contino F, Ferro A, Minafra L, Perconti G, Giallongo A, Feo S: The PVT-1 oncogene is a Myc protein target that is overexpressed in transformed cells. Journal of cellular physiology. 2007, 213 (2): 511-518. 10.1002/jcp.21133. Huppi K, Volfovsky N, Runfola T, Jones TL, Mackiewicz M, Martin SE, Mushinski JF, Stephens R, Caplen NJ: The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol Cancer Res. 2008, 6 (2): 212-221. 10.1158/1541-7786.MCR-07-0105. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1755-8794/2/21/prepub