Revelation of graphene-Au for direct write deposition and characterization

Nanoscale Research Letters - Tập 6 - Trang 1-7 - 2011
Shweta Bhandari1, Melepurath Deepa2, Amish G Joshi1, Aditya P Saxena1, Avanish K Srivastava1
1National Physical Laboratory, Council of Scientific and Industrial Research, New Delhi, India
2Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad, India

Tóm tắt

Graphene nanosheets were prepared using a modified Hummer's method, and Au-graphene nanocomposites were fabricated by in situ reduction of a gold salt. The as-produced graphene was characterized by X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). In particular, the HR-TEM demonstrated the layered crystallites of graphene with fringe spacing of about 0.32 nm in individual sheets and the ultrafine facetted structure of about 20 to 50 nm of Au particles in graphene composite. Scanning helium ion microscopy (HIM) technique was employed to demonstrate direct write deposition on graphene by lettering with gaps down to 7 nm within the chamber of the microscope. Bare graphene and graphene-gold nanocomposites were further characterized in terms of their composition and optical and electrical properties.

Tài liệu tham khảo

Hermando DH, Guinea F, Bratas A: Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys Rev B 2006, 7: 155426. Wallac PR: The band theory of graphite. Phys Rev 1947, 71: 622. 10.1103/PhysRev.71.622 Eda G, Fanchini G, Chhowalla M: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature 2008, 3: 270. Slonczewski JC, Weiss PR: Band structure of graphite. Phys Rev 1958, 109: 272. 10.1103/PhysRev.109.272 Vincenzo DPD, Mele EJ: Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys Rev B 1984, 29: 1685. 10.1103/PhysRevB.29.1685 Pasricha R, Gupta S, Srivastava AK: A facile and novel synthesis of Ag-graphene-based nanocomposites. Small 2009, 5: 2253. 10.1002/smll.200900726 Hicks J, Behnam A, Ural A: A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites. Appl Phys Lett 2009, 95: 213103. 10.1063/1.3267079 Rafiee MA, Lu W, Thomas AV, Zandiatashbar A, Rafiee J, Tour JM, Koratkar NA: Graphene nanoribbon composites. ACS Nano 2010, 4: 7415. 10.1021/nn102529n Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y: A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2009, 2: 343. 10.1007/s12274-009-9032-9 Xie SH, Liu YY, Li JY: Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett 2008, 92: 243121. 10.1063/1.2949074 Wassei JK, Tung VC, Jonans SJ, Cha K, Dunn BS, Tang Y, Kaner RB: Stenciling graphene, carbon nanotubes, and fullerenes using elastomeric lift-off membranes. Adv Matter 2010, 22: 897. 10.1002/adma.200902360 Goncalves G, Marques PAAP, Granadeiro CM, Noguiera HIS, Singh MK, Gracio J: Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 2009, 21: 4796. 10.1021/cm901052s Muszynski R, Seger B, Kamat PV: Decorating graphene sheets with gold nanoparticles. J Phys Chem C 2008, 112: 526. Kim Y-K, Kyung Na H, Min D-H: Influence of surface functionalization on the growth of gold nanostructures on graphene thin films. Langmuir 2010, 26: 13065. 10.1021/la102372z Bell DC: Contrast mechanisms and image formation in helium ion microscopy. Microsc Microanal 2009, 15: 147. 10.1017/S1431927609090138 Bell DC, Lemme MC, Stern LA, Williams JR, Marcus CM: Precision cutting and patterning of graphene with helium ions. Nanotechnology 2009, 20: 455301. 10.1088/0957-4484/20/45/455301 Lemme MC, Bell DC, Williams JR, Stern LA, Baugher BWH, Jarillo-Herrero P, Marcus CM: Etching of graphene devices with helium ion beam. ACS Nano 2009, 3: 2674. 10.1021/nn900744z Sidorkin V, Veldhoven EV, Drift EVD, Alkemade P, Salemink H, Maas D: Sub-10-nm nanolithography with a scanning helium beam. J Vac Sci Technol B 2009, 27: L18. Winston D, Cord BM, Ming B, Bell DC, Natale WFD, Stern LA, Vladar AE, Postek MT, Mondal MK, Yang JKW, Berggren KK: Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist. J Vac Sci Technol B 2009, 27: 2702. 10.1116/1.3250204 Alkemade P, Sidorkin V, Chen P, Drift EVD, Langen AV, Maas D, Veldhoven EV, Scipioni L: Helium ion beam processing for nano-fabrication and beam-induced chemistry. In Microscopy Analysis. New York: Wiley; 2010:5. Zhou Y, Loh KP: Making patterning on graphene. Adv Mater 2010, 22: 3615. 10.1002/adma.201000436 Bell DC, Lemme MC, Stern LA, Marcus CM: Precision material modification and patterning with He ions. J Vac Sci Technol B 2009, 27: 2755. 10.1116/1.3237113 Li J, Liu C-Y: Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 2010, 1244. Henglein A: Reduction of Ag(CN)2- on silver and platinum colloidal nanoparticles. Langmuir 2001, 17: 2329. 10.1021/la001081f Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 1994, 7: 801. Lopez-Salido I, Lim DC, Dietsche R, Bertram N, Kim YD: Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM). J Phys Chem B 2006, 110: 1128. 10.1021/jp054790g Wu XJ, Zeng XC: Periodic graphene nanobuds. Nano Lett 2009, 9: 250. 10.1021/nl802832m Deng ZW, Chen M, Wu LM: Novel method to fabricate SiO 2 /Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. J Phys Chem C 2007, 111: 11692. 10.1021/jp073632h