Use of Machine Learning to Identify Children with Autism and Their Motor Abnormalities

Journal of Autism and Developmental Disorders - Tập 45 - Trang 2146-2156 - 2015
Alessandro Crippa1,2, Christian Salvatore2, Paolo Perego3, Sara Forti1, Maria Nobile1,4, Massimo Molteni1, Isabella Castiglioni2
1Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea Bosisio Parini, Italy
2Institute of Molecular Imaging and Physiology, National Research Council, Segrate, Italy
3Bioengineering Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
4Department of Clinical Neurosciences, Hermanas Hospitalarias, FoRiPsi, Albese con Cassano, Italy

Tóm tắt

In the present work, we have undertaken a proof-of-concept study to determine whether a simple upper-limb movement could be useful to accurately classify low-functioning children with autism spectrum disorder (ASD) aged 2–4. To answer this question, we developed a supervised machine-learning method to correctly discriminate 15 preschool children with ASD from 15 typically developing children by means of kinematic analysis of a simple reach-to-drop task. Our method reached a maximum classification accuracy of 96.7 % with seven features related to the goal-oriented part of the movement. These preliminary findings offer insight into a possible motor signature of ASD that may be potentially useful in identifying a well-defined subset of patients, reducing the clinical heterogeneity within the broad behavioral phenotype.

Tài liệu tham khảo

Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends of Neurosciences, 31(3), 137–145. Ament, K., Mejia, A., Buhlman, R., Erklin, S., Caffo, B., Mostofsky, S., et al. (2014). Evidence for specificity of motor impairments in catching and balance in children with autism. Journal of Autism and Developmental Disorders. doi:10.1007/s10803-014-2229-0. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: American Psychiatric Association. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Association. Barnett, A. L., Guzzetta, A., Mercuri, E., Henderson, S. E., Haataja, L., Cowan, F., & Dubowitz, L. (2004). Can the Griffiths scales predict neuromotor and perceptual-motor impairment in term infants with neonatal encephalopathy? Archives of Disease in Childhood, 89, 637–643. Bishop, D. V. M. (2010). The difference between Po0.05 and a screening test. http://deevybee.blogspot.com/2010/07/difference-between-p-05-and-screening.html. Accessed June 30, 2014. Brian, J., Bryson, S. E., Garon, N., Roberts, W., Smith, I. M., Szatmari, P., & Zwaigenbaum, L. (2008). Clinical assessment of autism in high-risk 18-month-olds. Autism, 12(5), 433–456. Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., Cossu, G., & Rizzolatti, G. (2007). Impairment of actions chains in autism and its possible role in intention understanding. Proceedings of National Academy of Science of United States of America, 104(45), 17825–17830. Chapelle, O., Haffner, P., & Vapnik, V. N. (1999). Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks, 10(5), 1055–1064. Crippa, A., Forti, S., Perego, P., & Molteni, M. (2013). Eye-hand coordination in children with high functioning autism and Asperger’s disorder using a gap-overlap paradigm. Journal of Autism and Developmental Disorders, 43(4), 841–850. Deshpande, G., Libero, L. E., Sreenivasan, K. R., Deshpande, H. D., & Kana, R. K. (2013). Identification of neural connectivity signatures of autism using machine learning. Frontiers in Human Neuroscience, 7, 670. Dowd, A. M., McGinley, J. L., Taffe, J. R., & Rinehart, N. J. (2012). Do planning and visual integration difficulties underpin motor dysfunction in autism? A kinematic study of young children with autism. Journal of Autism and Developmental Disorders, 42(8), 1539–1548. Ecker, C., Marquand, A., Mourão-Miranda, J., Johnston, P., Daly, E. M., Brammer, M. J., et al. (2010a). Describing the brain in autism in five dimensions—Magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. Journal of Neuroscience, 30(32), 10612–10623. Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E. M., et al. (2010b). Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach. Neuroimage, 49(1), 44–56. Fabbri-Destro, M., Cattaneo, L., Boria, S., & Rizzolatti, G. (2009). Planning actions in autism. Experimental Brain Research, 192(3), 521–525. Forti, S., Valli, A., Perego, P., Nobile, M., Crippa, A., & Molteni, M. (2011). Motor planning and control in autism. A kinematic analysis of preschool children. Research in Autism Spectrum Disorders, 5(2), 834–842. Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorder, 40, 1227–1240. Freitag, C. M., Kleser, C., Schneider, M., & von Gontard, A. (2007). Quantitative assessment of neuromotor function in adolescents with high functioning autism and Asperger syndrome. Journal of Autism and Developmental Disorders, 37(5), 948–959. Glazebrook, C. M., Elliott, D., & Lyons, J. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Motor Control, 10(3), 244–264. Glazebrook, C., Gonzalez, D., Hansen, S., & Elliott, D. (2009). The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. Autism, 13(4), 411–433. Griffiths, R. (1970). The ability of young children. A study in mental measurement. London: University of London Press. Heneghan, C. (2010). Why autism can’t be diagnosed with brain scans: Using brain scans to detect autism would be a huge waste of money, says Carl Heneghan. http://www.guardian.co.uk/science/blog/2010/aug/12/autism-brainscan-statistic. Accessed June 30, 2014. Ingalhalikar, M., Parker, D., Bloy, L., Roberts, T. P., & Verma, R. (2011). Diffusion based abnormality markers of pathology: Toward learned diagnostic prediction of ASD. Neuroimage, 57(3), 918–927. Izawa, J., Pekny, S. E., Marko, M. K., Haswell, C. C., Shadmehr, R., & Mostofsky, S. H. (2012). Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditions. Autism Research, 5(2), 124–136. Jarrold, C., & Brock, J. (2004). To match or not to match? Methodological issues in autism-related research. Journal of Autism and Developmental Disorders, 34(1), 81–86. Lai, M. C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. The Lancet, 383(9920), 896–910. Lange, N., Dubray, M. B., Lee, J. E., Froimowitz, M. P., Froehlich, A., Adluru, N., et al. (2010). Atypical diffusion tensor hemispheric asymmetry in autism. Autism Research, 3(6), 350–358. Leary, M. R., & Hill, D. A. (1996). Moving on: Autism and movement disturbance. Mental Retardation, 34(1), 39–53. López, M., Ramírez, J., Górriz, J. M., Álvarez, I., Salas-Gonzalez, D., Segovia, F., et al. (2011). Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer’s disease. Neurocomputing, 74, 1260–1271. Lord, C., Risi, S., Lambrecht, L., Cook, E. H, Jr, Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685. Mari, M., Castiello, U., Marks, D., Marraffa, C., & Prior, M. (2003). The reach-to-grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1430), 393–403. Minshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. (2004). Underdevelopment of the postural control system in autism. Neurology, 63(11), 2056–2061. Nobile, M., Perego, P., Piccinini, L., Mani, E., Rossi, A., Bellina, M., & Molteni, M. (2011). Further evidence of complex motor dysfunction in drug naive children with autism using automatic motion analysis of gait. Autism, 15(3), 263–283. Oller, D. K., Niyogi, P., Gray, S., Richards, J. A., Gilkerson, J., Xu, D., et al. (2010). Automated vocal analysis of naturalistic recordings from children with autism, language delay, and typical development. Proceedings of National Academy of Science of United States of America, 107(30), 13354–13359. Padilla, P., Lopez, M., Gorriz, J. M., Ramirez, J., Salas-Gonzalez, D., & Alvarez, I. (2012). NMF–SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Transactions on Medical Imaging, 31(2), 207–216. Rinehart, N., & McGinley, J. (2010). Is motor dysfunction core to autism spectrum disorder? Developmental Medicine & Child Neurology, 52(8), 697. Salvatore, C., Cerasa, A., Castiglioni, I., Gallivanone, F., Augimeri, A., Lopez, M., et al. (2013). Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. Journal of Neuroscience Methods, 222, 230–237. Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New support vector algorithms. Neural Computation, 12(5), 1207–1245. Teitelbaum, P., Teitelbaum, O., Nye, J., Fryman, J., & Maurer, R. G. (1998). Movement analysis in infancy may be useful for early diagnosis of autism. Proceedings of the National Academy of Science of the United States of America, 95, 13982–13987. Thelen, E., Corbetta, D., & Spencer, J. P. (1996). Development of reaching during the first year: Role of movement speed. Journal of Experimental Psychology: Human Perception and Performance, 22(5), 1059–1076. Van Waelvelde, H., Oostra, A., Dewitte, G., Van Den Broeck, C., & Jongmans, M. J. (2010). Stability of motor problems in young children with or at risk of autism spectrum disorders, ADHD, and or developmental coordination disorder. Developmental Medicine & Child Neurolology, 52(8), 174–178. Vapnik, V. N. (1995). The nature of statistical learning theory. New York, NY: Springer. Vapnik, V. N. (1998). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988–999. Vapnik, V. N., & Chapelle, O. (1999). Bounds on error expectation for support vector machines. Neural Computation, 12(9), 2013–2036. Von Hofsten, C. (1991). Structuring of early reaching movements: A longitudinal study. Journal of Motor Behavior, 23(4), 280–292. Whyatt, C. P., & Craig, C. M. (2013). Sensory-motor problems in autism. Frontiers in Integrative Neuroscience, 7(51), 1–12. Yerys, B. E., & Pennington, B. F. (2011). How do we establish a biological marker for a behaviorally defined disorder? Autism as a test case. Autism Research, 4(4), 239–241.