On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction

Journal of Chemical Physics - Tập 116 Số 20 - Trang 9058-9067 - 2002
Hiroaki Fukunishi1, Osamu Watanabe2, Shoji Takada3,4
1Graduate School of Science and Technology, Kobe University, Nada, Kobe 657-8501, Japan
2Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan
3Department of Chemistry, Faculty of Science, kobe University
4PRESTO, Japan Science and Technology, Rokkodai, Nada, Kobe 657-8501, Japan

Tóm tắt

Motivated by the protein structure prediction problem, we develop two variants of the Hamiltonian replica exchange methods (REMs) for efficient configuration sampling, (1) the scaled hydrophobicity REM and (2) the phantom chain REM, and compare their performance with the ordinary REM. We first point out that the ordinary REM has a shortage for the application to large systems such as biomolecules and that the Hamiltonian REM, an alternative formulation of the REM, can give a remedy for it. We then propose two examples of the Hamiltonian REM that are suitable for a coarse-grained protein model. (1) The scaled hydrophobicity REM prepares replicas that are characterized by various strengths of hydrophobic interaction. The strongest interaction that mimics aqueous solution environment makes proteins folding, while weakened hydrophobicity unfolds proteins as in organic solvent. Exchange between these environments enables proteins to escape from misfolded traps and accelerate conformational search. This resembles the roles of molecular chaperone that assist proteins to fold in vivo. (2) The phantom chain REM uses replicas that allow various degrees of atomic overlaps. By allowing atomic overlap in some of replicas, the peptide chain can cross over itself, which can accelerate conformation sampling. Using a coarse-gained model we developed, we compute equilibrium probability distributions for poly-alanine 16-mer and for a small protein by these REMs and compare the accuracy of the results. We see that the scaled hydrophobicity REM is the most efficient method among the three REMs studied.

Từ khóa


Tài liệu tham khảo

1999, Curr. Opin. Biotechnol., 10, 583, 10.1016/S0958-1669(99)00037-3

2001, Annu. Rev. Biophys. Biomol. Struct., 30, 173, 10.1146/annurev.biophys.30.1.173

2001, Science, 294, 93, 10.1126/science.1065659

1997, J. Mol. Biol., 268, 209, 10.1006/jmbi.1997.0959

1999, Proteins, 34, 82, 10.1002/(SICI)1097-0134(19990101)34:1<82::AID-PROT7>3.0.CO;2-A

2001, J. Mol. Biol., 306, 1191, 10.1006/jmbi.2000.4459

1973, Science, 181, 223, 10.1126/science.181.4096.223

1999, Proteins, 35, 133, 10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N

2001, Eur. Biophys. J., 30, 1, 10.1007/s002490000111

1999, Acc. Chem. Res., 32, 741, 10.1021/ar970161g

1991, Phys. Lett. B, 267, 246

2001, Biopolymers, 60, 96, 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F

1992, J. Chem. Phys., 96, 1776, 10.1063/1.462133

1992, Europhys. Lett., 19, 451, 10.1209/0295-5075/19/6/002

1996, J. Phys. Soc. Jpn., 65, 1604, 10.1143/JPSJ.65.1604

1999, Chem. Phys. Lett., 314, 141, 10.1016/S0009-2614(99)01123-9

1999, Phys. Rev. E, 60, 3606, 10.1103/PhysRevE.60.3606

2000, J. Chem. Phys., 113, 5065, 10.1063/1.1289533

2000, J. Chem. Phys., 113, 6042, 10.1063/1.1308516

2000, Chem. Phys. Lett., 329, 261, 10.1016/S0009-2614(00)00999-4

2000, Chem. Phys. Lett., 332, 131, 10.1016/S0009-2614(00)01262-8

2000, Phys. Rev. E, 61, 5473

2001, J. Chem. Phys., 115, 5027, 10.1063/1.1396672

2001, Chem. Phys. Lett., 333, 199, 10.1016/S0009-2614(00)01342-7

2001, Chem. Phys. Lett., 335, 435, 10.1016/S0009-2614(01)00055-0

2002, Proteins, 46, 225, 10.1002/prot.1167

1996, J. Stat. Phys., 82, 155, 10.1007/BF02189229

1997, Chem. Phys. Lett., 281, 140, 10.1016/S0009-2614(97)01198-6

1999, J. Chem. Phys., 111, 9509, 10.1063/1.480282

1988, Phys. Rev. Lett., 61, 2635, 10.1103/PhysRevLett.61.2635

1989, Phys. Rev. Lett., 63, 1195, 10.1103/PhysRevLett.63.1195

1992, J. Comput. Chem., 13, 1011, 10.1002/jcc.540130812

1999, J. Chem. Phys., 110, 11616, 10.1063/1.479101

2001, Proteins, 42, 85, 10.1002/1097-0134(20010101)42:1<85::AID-PROT90>3.0.CO;2-3

1997, Nature (London), 388, 741, 10.1038/41944

1994, Science, 265, 659, 10.1126/science.7913555

1985, J. Mol. Biol., 186, 611, 10.1016/0022-2836(85)90134-2

1998, J. Phys. Soc. Jpn., 67, 3327, 10.1143/JPSJ.67.3327

1999, Phys. Rev. Lett., 83, 1886, 10.1103/PhysRevLett.83.1886

1997, J. Mol. Biol., 266, 859, 10.1006/jmbi.1996.0856

2000, Proc. Natl. Acad. Sci. U.S.A., 97, 13614, 10.1073/pnas.240245297