Hierarchical Organization of Modularity in Metabolic Networks

American Association for the Advancement of Science (AAAS) - Tập 297 Số 5586 - Trang 1551-1555 - 2002
Erzsébet Ravasz Regan1, A. L. Somera2, D. A. Mongru2, Zoltán N. Oltvai2, Albert‐László Barabási1
1Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA
2Department of Pathology, Northwestern University, Chicago, IL 60611, USA

Tóm tắt

Spatially or chemically isolated functional modules composed of several cellular components and carrying discrete functions are considered fundamental building blocks of cellular organization, but their presence in highly integrated biochemical networks lacks quantitative support. Here, we show that the metabolic networks of 43 distinct organisms are organized into many small, highly connected topologic modules that combine in a hierarchical manner into larger, less cohesive units, with their number and degree of clustering following a power law. Within Escherichia coli , the uncovered hierarchical modularity closely overlaps with known metabolic functions. The identified network architecture may be generic to system-level cellular organization.

Từ khóa


Tài liệu tham khảo

10.1038/35011540

10.1126/science.1069492

Wolf Y. I., Karev G., Koonin E. V., Bioessays 24, 105 (2002).

Lauffenburger D. A., Proc. Natl. Acad. Sci. U.S.A. 97, 5031 (2000).

Rao C. V., Arkin A. P., Annu. Rev. Biomed. Eng. 3, 391 (2001).

Holter N. S., Maritan A., Cieplak M., Fedoroff N. V., Banavar J. R., Proc. Natl. Acad. Sci. U.S.A. 98, 1693 (2001).

10.1038/35066056

10.1038/ng881

10.1038/16483

10.1038/35036627

Wagner A., Fell D. A., Proc. R. Soc. London Ser. B 268, 1803 (2001).

10.1126/science.286.5439.509

Schilling C. H., Letscher D., Palsson B. O., J. Theor. Biol. 203, 229 (2000).

Schuster S., Fell D. A., Dandekar T., Nature Biotechnol. 18, 326 (2000).

Overbeek R., et al., Nucleic Acids Res. 28, 123 (2000).

Additional information is available at www.nd.edu/∼networks/cell/index.html.

10.1038/30918

10.1103/RevModPhys.74.47

Barabási A.-L., Ravasz E., Vicsek T., Physica A 299, 559 (2001).

Dorogovtsev S. N., Goltsev A. V., Mendes J. F. F., Phys. Rev. E 65, 066122 (2002).

Karp P. D., Riley M., Paley S. M., Pellegrini-Toole A., Krummenacker M., Nucleic Acids Res. 30, 56 (2002).

10.1073/pnas.95.25.14863

Featherstone D. E., Broadie K., Bioessays 24, 267 (2002).

Wuchty S., Mol. Biol. Evol. 18, 1694 (2001).

Flake G. W., Lawrence S., Giles C. L., Coetzee F. M., Computer 53, 66 (2002).

10.1073/pnas.122653799

Vazquez A., Pastor-Satorras R., Vespignani A., Phys. Rev. E 65, 066130 (2002).

A. Vazquez A. Flammini A. Maritan A. Vespignani in press (available at ).

Solé R. V., Pastor-Satorras R., Smith E. D., Kepler T., Adv. Compl. Sys. 5, 43 (2002).

The algorithm package is available at .

We thank T. Vicsek and I. J. Farkas for discussions on the hierarchical model C. Waltenbaugh and J. W. Campbell for comments on the manuscript H. Jeong for help with analyzing the metabolic databases and the WIT project for making its database available. Research at the University of Notre Dame and at Northwestern University was supported by grants from the U.S. Department of Energy and NIH.